KSgeneral - Computing P-Values of the One-Sample K-S Test and the Two-Sample K-S and Kuiper Tests for (Dis)Continuous Null Distribution

Contains functions to compute p-values for the one-sample and two-sample Kolmogorov-Smirnov (KS) tests and the two-sample Kuiper test for any fixed critical level and arbitrary (possibly very large) sample sizes. For the one-sample KS test, this package implements a novel, accurate and efficient method named Exact-KS-FFT, which allows the pre-specified cumulative distribution function under the null hypothesis to be continuous, purely discrete or mixed. In the two-sample case, it is assumed that both samples come from an unspecified (unknown) continuous, purely discrete or mixed distribution, i.e. ties (repeated observations) are allowed, and exact p-values of the KS and the Kuiper tests are computed. Note, the two-sample Kuiper test is often used when data samples are on the line or on the circle (circular data). To cite this package in publication: (for the use of the one-sample KS test) Dimitrina S. Dimitrova, Vladimir K. Kaishev, and Senren Tan. Computing the Kolmogorov-Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed, or Continuous. Journal of Statistical Software. 2020; 95(10): 1--42. <doi:10.18637/jss.v095.i10>. (for the use of the two-sample KS and Kuiper tests) Dimitrina S. Dimitrova, Yun Jia and Vladimir K. Kaishev (2024). The R functions KS2sample and Kuiper2sample: Efficient Exact Calculation of P-values of the Two-sample Kolmogorov-Smirnov and Kuiper Tests. submitted.

Last updated 1 days ago

0.61 score 3 dependencies

wrMisc - Analyze Experimental High-Throughput (Omics) Data

The efficient treatment and convenient analysis of experimental high-throughput (omics) data gets facilitated through this collection of diverse functions. Several functions address advanced object-conversions, like manipulating lists of lists or lists of arrays, reorganizing lists to arrays or into separate vectors, merging of multiple entries, etc. Another set of functions provides speed-optimized calculation of standard deviation (sd), coefficient of variance (CV) or standard error of the mean (SEM) for data in matrixes or means per line with respect to additional grouping (eg n groups of replicates). A group of functions facilitate dealing with non-redundant information, by indexing unique, adding counters to redundant or eliminating lines with respect redundancy in a given reference-column, etc. Help is provided to identify very closely matching numeric values to generate (partial) distance matrixes for very big data in a memory efficient manner or to reduce the complexity of large data-sets by combining very close values. Other functions help aligning a matrix or data.frame to a reference using partial matching or to mine an experimental setup to extract patterns of replicate samples. Many times large experimental datasets need some additional filtering, adequate functions are provided. Convenient data normalization is supported in various different modes, parameter estimation via permutations or boot-strap as well as flexible testing of multiple pair-wise combinations using the framework of 'limma' is provided, too. Batch reading (or writing) of sets of files and combining data to arrays is supported, too.

Last updated 4 days ago

1.45 score 1 dependencies 3 dependents

LadderFuelsR - Automated Tool for Vertical Fuel Continuity Analysis using Airborne Laser Scanning Data

Set of tools for analyzing vertical fuel continuity at the tree level using Airborne Laser Scanning data. The workflow consisted of: 1) calculating the vertical height profiles of each segmented tree; 2) identifying gaps and fuel layers; 3) estimating the distance between fuel layers; and 4) retrieving the fuel layers base height and depth. Additionally, other functions recalculate previous metrics after considering distances greater than certain threshold. Moreover, the package calculates: i) the percentage of Leaf Area Density comprised in each fuel layer, ii) remove fuel layers with Leaf Area Density (LAD) percentage less than 10, and iii) recalculate the distances among the reminder ones. On the other hand, it identifies the crown base height (CBH) based on different criteria: the fuel layer with the highest LAD percentage and the fuel layers located at the largest- and at the last-distance. When there is only one fuel layer, it also identifies the CBH performing a segmented linear regression (breaking points) on the cumulative sum of LAD as a function of height. Finally, a collection of plotting functions is developed to represent: i) the initial gaps and fuel layers; ii) the fuels base height, depths and gaps with distances greater than certain threshold and, iii) the CBH based on different criteria. The methods implemented in this package are original and have not been published elsewhere.

Last updated 6 days ago

0.71 score 39 dependencies

bsvarSIGNs - Bayesian SVARs with Sign, Zero, and Narrative Restrictions

Implements state-of-the-art algorithms for the Bayesian analysis of Structural Vector Autoregressions (SVARs) identified by sign, zero, and narrative restrictions. The core model is based on a flexible Vector Autoregression with estimated hyper-parameters of the Minnesota prior and the dummy observation priors as in Giannone, Lenza, Primiceri (2015) <doi:10.1162/REST_a_00483>. The sign restrictions are implemented employing the methods proposed by Rubio-Ramírez, Waggoner & Zha (2010) <doi:10.1111/j.1467-937X.2009.00578.x>, while identification through sign and zero restrictions follows the approach developed by Arias, Rubio-Ramírez, & Waggoner (2018) <doi:10.3982/ECTA14468>. Furthermore, our tool provides algorithms for identification via sign and narrative restrictions, in line with the methods introduced by Antolín-Díaz and Rubio-Ramírez (2018) <doi:10.1257/aer.20161852>. Users can also estimate a model with sign, zero, and narrative restrictions imposed at once. The package facilitates predictive and structural analyses using impulse responses, forecast error variance and historical decompositions, forecasting and conditional forecasting, as well as analyses of structural shocks and fitted values. All this is complemented by colourful plots, user-friendly summary functions, and comprehensive documentation. The 'bsvarSIGNs' package is aligned regarding objects, workflows, and code structure with the R package 'bsvars' by Woźniak (2024) <doi:10.32614/CRAN.package.bsvars>, and they constitute an integrated toolset.

Last updated 4 days ago

0.09 score 10 dependencies