Package: JGL 2.3.2

Patrick Danaher

JGL: Performs the Joint Graphical Lasso for Sparse Inverse Covariance Estimation on Multiple Classes

The Joint Graphical Lasso is a generalized method for estimating Gaussian graphical models/ sparse inverse covariance matrices/ biological networks on multiple classes of data. We solve JGL under two penalty functions: The Fused Graphical Lasso (FGL), which employs a fused penalty to encourage inverse covariance matrices to be similar across classes, and the Group Graphical Lasso (GGL), which encourages similar network structure between classes. FGL is recommended over GGL for most applications. Reference: Danaher P, Wang P, Witten DM. (2013) <doi:10.1111/rssb.12033>.

Authors:Patrick Danaher

JGL_2.3.2.tar.gz
JGL_2.3.2.tar.gz(r-4.5-noble)JGL_2.3.2.tar.gz(r-4.4-noble)
JGL_2.3.2.tgz(r-4.4-emscripten)JGL_2.3.2.tgz(r-4.3-emscripten)
JGL.pdf |JGL.html
JGL/json (API)

# Install 'JGL' in R:
install.packages('JGL', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

3.64 score 1 stars 1 packages 96 scripts 269 downloads 3 mentions 10 exports 11 dependencies

Last updated 11 months agofrom:52fc1717ad. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 14 2024
R-4.5-linuxOKNov 14 2024

Exports:JGLnet.degreenet.edgesnet.hubsnet.neighborsplot.jglprint.jglscreen.fglscreen.gglsubnetworks

Dependencies:clicpp11glueigraphlatticelifecyclemagrittrMatrixpkgconfigrlangvctrs