Package: beanz 3.1

Chenguang Wang

beanz: Bayesian Analysis of Heterogeneous Treatment Effect

It is vital to assess the heterogeneity of treatment effects (HTE) when making health care decisions for an individual patient or a group of patients. Nevertheless, it remains challenging to evaluate HTE based on information collected from clinical studies that are often designed and conducted to evaluate the efficacy of a treatment for the overall population. The Bayesian framework offers a principled and flexible approach to estimate and compare treatment effects across subgroups of patients defined by their characteristics. This package allows users to explore a wide range of Bayesian HTE analysis models, and produce posterior inferences about HTE. See Wang et al. (2018) <doi:10.18637/jss.v085.i07> for further details.

Authors:Chenguang Wang [aut, cre], Ravi Varadhan [aut], Trustees of Columbia University [cph]

beanz_3.1.tar.gz
beanz_3.1.tar.gz(r-4.5-noble)beanz_3.1.tar.gz(r-4.4-noble)
beanz.pdf |beanz.html
beanz/json (API)
NEWS

# Install 'beanz' in R:
install.packages('beanz', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • solvd.sub - Subject level data from SOLVD trial

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 1 stars 7 scripts 340 downloads 1 mentions 13 exports 54 dependencies

Last updated 1 years agofrom:d2bbbc6673. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 26 2024
R-4.5-linux-x86_64OKOct 26 2024

Exports:bzCallStanbzForestbzForestCompbzGailSimonbzGetSubgrpbzGetSubgrpRawbzPlotbzPlotCompbzPredSubgrpbzRptTblbzShinybzSummarybzSummaryComp

Dependencies:abindbackportsBHcallrcheckmateclicolorspacedescdistributionalfansifarvergenericsggplot2gluegridExtragtableinlineisobandlabelinglatticelifecycleloomagrittrMASSMatrixmatrixStatsmgcvmunsellnlmenumDerivpillarpkgbuildpkgconfigposteriorprocessxpsQuickJSRR6RColorBrewerRcppRcppEigenRcppParallelrlangrstanrstantoolsscalesStanHeaderssurvivaltensorAtibbleutf8vctrsviridisLitewithr

beanz: Bayesian Analysis of Heterogeneous Treatment Effect

Rendered frombeanz_vignettes.Rmdusingknitr::rmarkdownon Oct 26 2024.

Last update: 2023-08-09
Started: 2016-05-04