Package: GeomComb 1.0

Christoph E. Weiss

GeomComb: (Geometric) Forecast Combination Methods

Provides eigenvector-based (geometric) forecast combination methods; also includes simple approaches (simple average, median, trimmed and winsorized mean, inverse rank method) and regression-based combination. Tools for data pre-processing are available in order to deal with common problems in forecast combination (missingness, collinearity).

Authors:Christoph E. Weiss, Gernot R. Roetzer

GeomComb_1.0.tar.gz
GeomComb_1.0.tar.gz(r-4.5-noble)GeomComb_1.0.tar.gz(r-4.4-noble)
GeomComb_1.0.tgz(r-4.4-emscripten)GeomComb_1.0.tgz(r-4.3-emscripten)
GeomComb.pdf |GeomComb.html
GeomComb/json (API)

# Install 'GeomComb' in R:
install.packages('GeomComb', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/ceweiss/geomcomb/issues

On CRAN:

Conda:

1.70 score 161 downloads 17 exports 58 dependencies

Last updated 8 years agofrom:80e5e0db25. Checks:2 OK, 1 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 28 2025
R-4.5-linuxNOTEMar 28 2025
R-4.4-linuxOKMar 28 2025

Exports:auto_combinecomb_BGcomb_CLScomb_EIG1comb_EIG2comb_EIG3comb_EIG4comb_InvWcomb_LADcomb_MEDcomb_NGcomb_OLScomb_SAcomb_TAcomb_WAcs_dispersionforeccomb

Dependencies:clicodetoolscolorspacecurlfansifarverforeachforecastForecastCombinationsfracdiffgamgenericsggplot2glueGPArotationgtableisobanditeratorsjsonlitelabelinglatticelifecyclelmtestmagrittrMASSMatrixMatrixModelsmgcvmnormtmtsdimunsellnlmennetpillarpkgconfigpsychquadprogquantmodquantregR6RColorBrewerRcppRcppArmadillorlangscalesSparseMsurvivaltibbletimeDatetseriesTTRurcautf8vctrsviridisLitewithrxtszoo

Citation

To cite package ‘GeomComb’ in publications use:

Weiss CE, Roetzer GR (2016). GeomComb: (Geometric) Forecast Combination Methods. R package version 1.0, https://CRAN.R-project.org/package=GeomComb.

ATTENTION: This citation information has been auto-generated from the package DESCRIPTION file and may need manual editing, see ‘help("citation")’.

Corresponding BibTeX entry:

  @Manual{,
    title = {GeomComb: (Geometric) Forecast Combination Methods},
    author = {Christoph E. Weiss and Gernot R. Roetzer},
    year = {2016},
    note = {R package version 1.0},
    url = {https://CRAN.R-project.org/package=GeomComb},
  }

Readme and manuals

GeomComb

(Geometric) Forecast Combination in R

(written by Chris E. Weiss and Gernot Roetzer)

The R package GeomComb presents functions to pool individual model forecasts using geometric (eigenvector-based) forecast combination methods. The package also provides functions for simple forecast combination methods (inverse rank approach, simple average, trimmed mean, and winsorized mean - including the option of a criterion-based optimisation of the trimming factor) and regression-based forecast combination methods.

The forecast combination methods allow for 3 different input types:

  1. Only training set

  2. Training set + future forecasts

  3. Full training + test set

Accuracy measures are provided accordingly, summary and plot functions have been created for the S3 classes. The function auto.combine() is an automated selection of the best combination method based on criterion optimisation in the training set.

Installation

The package is still in the development stage -- updates on CRAN release will be shared here in the future.

If you are interested in using the provided functions for your research in the meantime, you are welcome to email us: info@ceweiss.com

You can also install the development version from Github

# install.packages("devtools")
devtools::install_github("ceweiss/GeomComb")

License

This package is free and open source software, licensed under GPL (>= 2).

Help Manual

Help pageTopics
Automated Forecast Combinationauto_combine
Bates/Granger (1969) Forecast Combination Approachcomb_BG
Constrained Least Squares Forecast Combinationcomb_CLS
Standard Eigenvector Forecast Combinationcomb_EIG1
Bias-Corrected Eigenvector Forecast Combinationcomb_EIG2
Trimmed Eigenvector Forecast Combinationcomb_EIG3
Trimmed Bias-Corrected Eigenvector Forecast Combinationcomb_EIG4
Inverse Rank Forecast Combinationcomb_InvW
Least Absolute Deviation Forecast Combinationcomb_LAD
Median Forecast Combinationcomb_MED
Newbold/Granger (1974) Forecast Combinationcomb_NG
Ordinary Least Squares Forecast Combinationcomb_OLS
Simple Average Forecast Combinationcomb_SA
Trimmed Mean Forecast Combinationcomb_TA
Winsorized Mean Forecast Combinationcomb_WA
Compute Cross-Sectional Dispersioncs_dispersion
Format Raw Data for Forecast Combinationforeccomb
Plot results from forecast combination modelplot.foreccomb_res
Summary of Forecast Combinationprint.foreccomb_res_summary summary.foreccomb_res