Package: GeomComb 1.0

Christoph E. Weiss
GeomComb: (Geometric) Forecast Combination Methods
Provides eigenvector-based (geometric) forecast combination methods; also includes simple approaches (simple average, median, trimmed and winsorized mean, inverse rank method) and regression-based combination. Tools for data pre-processing are available in order to deal with common problems in forecast combination (missingness, collinearity).
Authors:
GeomComb_1.0.tar.gz
GeomComb_1.0.tar.gz(r-4.5-noble)GeomComb_1.0.tar.gz(r-4.4-noble)
GeomComb_1.0.tgz(r-4.4-emscripten)GeomComb_1.0.tgz(r-4.3-emscripten)
GeomComb.pdf |GeomComb.html✨
GeomComb/json (API)
# Install 'GeomComb' in R: |
install.packages('GeomComb', repos = 'https://cloud.r-project.org') |
Bug tracker:https://github.com/ceweiss/geomcomb/issues
Last updated 8 years agofrom:80e5e0db25. Checks:2 OK, 1 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 28 2025 |
R-4.5-linux | NOTE | Mar 28 2025 |
R-4.4-linux | OK | Mar 28 2025 |
Exports:auto_combinecomb_BGcomb_CLScomb_EIG1comb_EIG2comb_EIG3comb_EIG4comb_InvWcomb_LADcomb_MEDcomb_NGcomb_OLScomb_SAcomb_TAcomb_WAcs_dispersionforeccomb
Dependencies:clicodetoolscolorspacecurlfansifarverforeachforecastForecastCombinationsfracdiffgamgenericsggplot2glueGPArotationgtableisobanditeratorsjsonlitelabelinglatticelifecyclelmtestmagrittrMASSMatrixMatrixModelsmgcvmnormtmtsdimunsellnlmennetpillarpkgconfigpsychquadprogquantmodquantregR6RColorBrewerRcppRcppArmadillorlangscalesSparseMsurvivaltibbletimeDatetseriesTTRurcautf8vctrsviridisLitewithrxtszoo
Citation
To cite package ‘GeomComb’ in publications use:
Weiss CE, Roetzer GR (2016). GeomComb: (Geometric) Forecast Combination Methods. R package version 1.0, https://CRAN.R-project.org/package=GeomComb.
ATTENTION: This citation information has been auto-generated from the package DESCRIPTION file and may need manual editing, see ‘help("citation")’.
Corresponding BibTeX entry:
@Manual{, title = {GeomComb: (Geometric) Forecast Combination Methods}, author = {Christoph E. Weiss and Gernot R. Roetzer}, year = {2016}, note = {R package version 1.0}, url = {https://CRAN.R-project.org/package=GeomComb}, }
Readme and manuals
GeomComb
(Geometric) Forecast Combination in R
(written by Chris E. Weiss and Gernot Roetzer)
The R package GeomComb presents functions to pool individual model forecasts using geometric (eigenvector-based) forecast combination methods. The package also provides functions for simple forecast combination methods (inverse rank approach, simple average, trimmed mean, and winsorized mean - including the option of a criterion-based optimisation of the trimming factor) and regression-based forecast combination methods.
The forecast combination methods allow for 3 different input types:
-
Only training set
-
Training set + future forecasts
-
Full training + test set
Accuracy measures are provided accordingly, summary and plot functions have been created for the S3 classes. The function auto.combine() is an automated selection of the best combination method based on criterion optimisation in the training set.
Installation
The package is still in the development stage -- updates on CRAN release will be shared here in the future.
If you are interested in using the provided functions for your research in the meantime, you are welcome to email us: info@ceweiss.com
You can also install the development version from Github
# install.packages("devtools")
devtools::install_github("ceweiss/GeomComb")
License
This package is free and open source software, licensed under GPL (>= 2).
Help Manual
Help page | Topics |
---|---|
Automated Forecast Combination | auto_combine |
Bates/Granger (1969) Forecast Combination Approach | comb_BG |
Constrained Least Squares Forecast Combination | comb_CLS |
Standard Eigenvector Forecast Combination | comb_EIG1 |
Bias-Corrected Eigenvector Forecast Combination | comb_EIG2 |
Trimmed Eigenvector Forecast Combination | comb_EIG3 |
Trimmed Bias-Corrected Eigenvector Forecast Combination | comb_EIG4 |
Inverse Rank Forecast Combination | comb_InvW |
Least Absolute Deviation Forecast Combination | comb_LAD |
Median Forecast Combination | comb_MED |
Newbold/Granger (1974) Forecast Combination | comb_NG |
Ordinary Least Squares Forecast Combination | comb_OLS |
Simple Average Forecast Combination | comb_SA |
Trimmed Mean Forecast Combination | comb_TA |
Winsorized Mean Forecast Combination | comb_WA |
Compute Cross-Sectional Dispersion | cs_dispersion |
Format Raw Data for Forecast Combination | foreccomb |
Plot results from forecast combination model | plot.foreccomb_res |
Summary of Forecast Combination | print.foreccomb_res_summary summary.foreccomb_res |