Package: rjaf 0.1.1

Xinyi Zhang

rjaf: Regularized Joint Assignment Forest with Treatment Arm Clustering

Personalized assignment to one of many treatment arms via regularized and clustered joint assignment forests as described in Ladhania, Spiess, Ungar, and Wu (2023) <doi:10.48550/arXiv.2311.00577>. The algorithm pools information across treatment arms: it considers a regularized forest-based assignment algorithm based on greedy recursive partitioning that shrinks effect estimates across arms; and it incorporates a clustering scheme that combines treatment arms with consistently similar outcomes.

Authors:Wenbo Wu [aut, cph], Xinyi Zhang [aut, cre, cph], Jann Spiess [aut, cph], Rahul Ladhania [aut, cph]

rjaf_0.1.1.tar.gz
rjaf_0.1.1.tar.gz(r-4.5-noble)rjaf_0.1.1.tar.gz(r-4.4-noble)
rjaf_0.1.1.tgz(r-4.4-emscripten)rjaf_0.1.1.tgz(r-4.3-emscripten)
rjaf.pdf |rjaf.html
rjaf/json (API)

# Install 'rjaf' in R:
install.packages('rjaf', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/wustat/rjaf/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

cpp

1.30 score 4 scripts 420 downloads 2 exports 40 dependencies

Last updated 21 days agofrom:6dcfd8b894. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 08 2024
R-4.5-linux-x86_64OKDec 08 2024

Exports:residualizerjaf

Dependencies:bitbit64clicliprcpp11crayondplyrfansiforcatsgenericsgluehmslatticelifecyclemagrittrMASSMatrixpillarpkgconfigprettyunitsprogresspurrrR6randomForestrangerRcppRcppArmadilloRcppEigenreadrrlangstringistringrtibbletidyrtidyselecttzdbutf8vctrsvroomwithr