Package: vscc 0.7

Paul D. McNicholas

vscc: Variable Selection for Clustering and Classification

Performs variable selection/feature reduction under a clustering or classification framework. In particular, it can be used in an automated fashion using mixture model-based methods ('teigen' and 'mclust' are currently supported). Can account for mixtures of non-Gaussian distributions via Manly transform (via 'ManlyMix'). See Andrews and McNicholas (2014) <doi:10.1007/s00357-013-9139-2> and Neal and McNicholas (2023) <doi:10.48550/arXiv.2305.16464>.

Authors:Jeffrey L. Andrews [aut], Mackenzie R. Neal [aut], Paul D. McNicholas [aut, cre]

vscc_0.7.tar.gz
vscc_0.7.tar.gz(r-4.5-noble)vscc_0.7.tar.gz(r-4.4-noble)
vscc_0.7.tgz(r-4.4-emscripten)vscc_0.7.tgz(r-4.3-emscripten)
vscc.pdf |vscc.html
vscc/json (API)

# Install 'vscc' in R:
install.packages('vscc', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 14 scripts 610 downloads 1 mentions 2 exports 21 dependencies

Last updated 1 years agofrom:d3e518333a. Checks:OK: 1 NOTE: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 11 2024
R-4.5-linuxNOTEDec 11 2024

Exports:vsccvsccmanly

Dependencies:BesselBHclassclustere1071ghypgmplatticeManlyMixMASSmclustMixGHDmixturemvtnormnumDerivproxyRcppRcppArmadilloRcppGSLRmpfrteigen