Package: dSTEM 2.0-1

Zhibing He

dSTEM: Multiple Testing of Local Extrema for Detection of Change Points

Simultaneously detect the number and locations of change points in piecewise linear models under stationary Gaussian noise allowing autocorrelated random noise. The core idea is to transform the problem of detecting change points into the detection of local extrema (local maxima and local minima)through kernel smoothing and differentiation of the data sequence, see Cheng et al. (2020) <doi:10.1214/20-EJS1751>. A low-computational and fast algorithm call 'dSTEM' is introduced to detect change points based on the 'STEM' algorithm in D. Cheng and A. Schwartzman (2017) <doi:10.1214/16-AOS1458>.

Authors:Zhibing He <[email protected]>

dSTEM_2.0-1.tar.gz
dSTEM_2.0-1.tar.gz(r-4.5-noble)dSTEM_2.0-1.tar.gz(r-4.4-noble)
dSTEM_2.0-1.tgz(r-4.4-emscripten)dSTEM_2.0-1.tgz(r-4.3-emscripten)
dSTEM.pdf |dSTEM.html
dSTEM/json (API)
NEWS

# Install 'dSTEM' in R:
install.packages('dSTEM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • HST_stock - Stock price of Host & Hotel Resorts

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 3 scripts 144 downloads 13 exports 1 dependencies

Last updated 1 years agofrom:aaab118e56. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-linuxOKNov 03 2024

Exports:convcp.pltcpTestdstemest.pairest.sigma2est.slopeFdrfdrBHgen.signalsmth.gausnrwhich.peaks

Dependencies:MASS