Package: BayesRGMM 2.2
Kuo-Jung Lee
BayesRGMM: Bayesian Robust Generalized Mixed Models for Longitudinal Data
To perform model estimation using MCMC algorithms with Bayesian methods for incomplete longitudinal studies on binary and ordinal outcomes that are measured repeatedly on subjects over time with drop-outs. Details about the method can be found in the vignette or <https://sites.google.com/view/kuojunglee/r-packages/bayesrgmm>.
Authors:
BayesRGMM_2.2.tar.gz
BayesRGMM_2.2.tar.gz(r-4.5-noble)BayesRGMM_2.2.tar.gz(r-4.4-noble)
BayesRGMM_2.2.tgz(r-4.4-emscripten)BayesRGMM_2.2.tgz(r-4.3-emscripten)
BayesRGMM.pdf |BayesRGMM.html✨
BayesRGMM/json (API)
# Install 'BayesRGMM' in R: |
install.packages('BayesRGMM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- GSPS - The German socioeconomic panel study data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:63df167ec3. Checks:OK: 1 NOTE: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 18 2024 |
R-4.5-linux-x86_64 | NOTE | Dec 18 2024 |
Exports:AR1.corBayesCumulativeProbitHSDBayesRobustProbitBayesRobustProbitSummaryCorrMat.HSDSimulatedDataGeneratorSimulatedDataGenerator.CumulativeProbit
Dependencies:abindbatchmeanscliexpmfansigenericsgluelatticelifecyclemagrittrMASSMatrixmsmmvtnormpillarpkgconfigplyrrbibutilsRcppRcppArmadilloRcppDistRdpackreshaperlangsurvivaltibbleutf8vctrs
Readme and manuals
Help Manual
Help page | Topics |
---|---|
AR(1) correlation matrix | AR1.cor |
Perform MCMC algorithm to generate the posterior samples for longitudinal ordinal data | BayesCumulativeProbitHSD |
Perform MCMC algorithm to generate the posterior samples | BayesRobustProbit |
To summarizes model estimation outcomes | BayesRobustProbitSummary |
To compute the correlation matrix in terms of hypersphere decomposition approach | CorrMat.HSD |
The German socioeconomic panel study data | GSPS |
Generate simulated data with either ARMA or MCD correlation structures. | SimulatedDataGenerator |
Simulating a longitudinal ordinal data with HSD correlation structures. | SimulatedDataGenerator.CumulativeProbit |