Package: mable 4.1.1

Zhong Guan

mable: Maximum Approximate Bernstein/Beta Likelihood Estimation

Fit data from a continuous population with a smooth density on finite interval by an approximate Bernstein polynomial model which is a mixture of certain beta distributions and find maximum approximate Bernstein likelihood estimator of the unknown coefficients. Consequently, maximum likelihood estimates of the unknown density, distribution functions, and more can be obtained. If the support of the density is not the unit interval then transformation can be applied. This is an implementation of the methods proposed by the author of this package published in the Journal of Nonparametric Statistics: Guan (2016) <doi:10.1080/10485252.2016.1163349> and Guan (2017) <doi:10.1080/10485252.2017.1374384>. For data with covariates, under some semiparametric regression models such as Cox proportional hazards model and the accelerated failure time model, the baseline survival function can be estimated smoothly based on general interval censored data.

Authors:Zhong Guan [aut, cre]

mable_4.1.1.tar.gz
mable_4.1.1.tar.gz(r-4.5-noble)mable_4.1.1.tar.gz(r-4.4-noble)
mable_4.1.1.tgz(r-4.4-emscripten)mable_4.1.1.tgz(r-4.3-emscripten)
mable.pdf |mable.html
mable/json (API)

# Install 'mable' in R:
install.packages('mable', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.56 score 18 scripts 448 downloads 56 exports 16 dependencies

Last updated 1 months agofrom:de7f5a9191. Checks:OK: 1 WARNING: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-linux-x86_64WARNINGNov 01 2024

Exports:chpt.expcorr.hellingerd2dcop.asymdcopuladcopula.conddmixbetadmixmvbetadtmixbetahellcorrmablemable.aftmable.copulamable.ctrlmable.deconmable.drmable.dr.groupmable.groupmable.hellcorrmable.icmable.mvarmable.phmable.pomable.regmade.copulamade.densitymade.mvarmadem.copulamadem.densitymaple.aftmaple.drmaple.dr.groupmaple.phmaple.pomarginal.pmvecdfmvpbetaoptim.gcpoptimablep2dcop.asympcopulapcopula.condpmixbetapmixmvbetaptmixbetaqcopula.condqmixbetaqtmixbetar2dcop.asymrcopularcopula.condrmixbetarmixmvbetartmixbetase.coef.drumc.matweib.gpo

Dependencies:codacodetoolsdoParallelforeachicenRegiteratorslatticeLowRankQPMatrixMLEcensmnormtquadprogRcppRcppEigenrlangsurvival

Maximum Approximate Bernstein/Beta Likelihood Estimation in R package 'mable'

Rendered frommable.Rmdusingknitr::knitron Nov 01 2024.

Last update: 2024-09-28
Started: 2020-01-12

Readme and manuals

Help Manual

Help pageTopics
Chicken Embryo Datachicken.embryo
Exponential change-pointchpt.exp
Some Bivariate Copulascopula2d d2dcop.asym dcopula p2dcop.asym pcopula r2dcop.asym rcopula
Some Parametric Conditional Bivariate Copulascopula2d.cond dcopula.cond pcopula.cond qcopula.cond rcopula.cond
Bhattacharyya coefficient and Hellinger correlationcorr.hellinger
Breast cosmesis datacosmesis
Mixture Beta Distributiondmixbeta pmixbeta qmixbeta rmixbeta
Multivariate Mixture Beta Distributiondmixmvbeta pmixmvbeta rmixmvbeta
Exponentially Tilted Mixture Beta Distributiondtmixbeta ptmixbeta qtmixbeta rtmixbeta
Maximum Approximate Bernstein Likelihood Estimate of Univariate or Multivariate Density Functionmable
Mable fit of Accelerated Failure Time Modelmable.aft
Maximum Approximate Bernstein Likelihood Estimate of Copula Density Functionmable.copula
Control parameters for mable fitmable.ctrl
Mable deconvolution with a known error densitymable.decon
MABLE in Desnity Ratio Modelmable.dr
Mable fit of the density ratio model based on grouped datamable.dr.group
Mable fit of one-sample grouped data by an optimal or a preselected model degreemable.group
Estimate of Hellinger Correlation between two random variables and Bootstraphellcorr mable.hellcorr
Mable fit based on one-sample interval censored datamable.ic
Maximum Approximate Bernstein Likelihood Estimate of Multivariate Density Functionmable.mvar
Mable fit of Cox's proportional hazards regression modelmable.ph
Mable fit of proportional odds rate regression modelmable.po
Mable fit of semiparametric regression model based on interval censored datamable.reg
Minimum Approximate Distance Estimate of Copula Densitymade.copula
Minimum Approximate Distance Estimate of Density Function with an optimal model degreemade.density
Minimum Approximate Distance Estimate of Multivariate Density Functionmade.mvar
Minimum Approximate Distance Estimate of Copula with given model degreesmadem.copula
Minimum Approximate Distance Estimate of univariate Density Function with given model degree(s)madem.density
Mable fit of AFT model with given regression coefficientsmaple.aft
Maximum approximate profile likelihood estimate of the density ratio modelmaple.dr
Maximum approximate profile likelihood estimate of the density ratio model for grouped data with given regression coefficientsmaple.dr.group
Mable fit of the PH model with given regression coefficientsmaple.ph
Mable fit of the PO model with given regression coefficientsmaple.po
The mixing proportions of marginal distribution from the mixture of multivariate beta distributionmarginal.p
Multivariate empirical cumulative distribution evaluated at sample datamvecdf
Component Beta cumulative distribution functions of the Bernstein polynomial modelmvpbeta
Choosing optimal model degree by gamma change-point methodoptim.gcp
mable with degree selected by the method of moment and method of modeoptimable
Pancreatic Cancer Biomarker Datapancreas
Plot mathod for class 'mable'plot.mable
Plot mathod for class 'mable_reg'plot.mable_reg
Standard errors of coefficients in density ratio modelse.coef.dr
Summary mathods for classes 'mable' and 'mable_reg'summary.mable summary.mable_reg
Matrix of the uniform marginal constraintsumc.mat
Vaal River Annual Flow DataVaal.Flow
Generalized PO model with Weibull baselineweib.gpo