Package: HQM 1.0

Dimitrios Bagkavos

HQM: Superefficient Estimation of Future Conditional Hazards Based on Marker Information

Provides a nonparametric smoothed kernel estimator for the future conditional hazard rate function when time-dependent covariates are present, a bandwidth selector for the estimator's implementation and pointwise and uniform confidence bands. Methods used in the package refer to Bagkavos, Isakson, Mammen, Nielsen and Proust-Lima (2025) <doi:10.1093/biomet/asaf008>.

Authors:Dimitrios Bagkavos [aut, cre], Alex Isakson [ctb], Enno Mammen [ctb], Jens Nielsen [ctb], Cecile Proust-Lima [ctb]

HQM_1.0.tar.gz
HQM_1.0.tar.gz(r-4.5-noble)HQM_1.0.tar.gz(r-4.4-noble)
HQM_1.0.tgz(r-4.4-emscripten)HQM_1.0.tgz(r-4.3-emscripten)
HQM.pdf |HQM.html
HQM/json (API)

# Install 'HQM' in R:
install.packages('HQM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:
  • pbc2 - Mayo Clinic Primary Biliary Cirrhosis Data

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.60 score 314 downloads 33 exports 106 dependencies

Last updated 19 days agofrom:3d200be656. Checks:2 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 01 2025
R-4.5-linuxOKFeb 01 2025

Exports:auc.hqmb_selectionb_selection_prep_gbs.hqmConf_bandsdataset_splitdijEpang_xtget_alphaget_h_xget_h_xllh_xth_xt_vech_xtllK_bK_b_matlin_interpolatellK_bmake_Nmake_Nimake_sfmake_Ymake_Yiprep_bootprep_cvQ1R_Ksn.0sn.1sn.2to_idxK_b

Dependencies:backportsbase64encbslibcachemcheckmatecliclustercmprskcodetoolscolorspacedata.tablediagramdigestdoParallelevaluatefansifarverfastmapfontawesomeforeachforeignFormulafsfuturefuture.applyggplot2globalsgluegridExtragtablehighrHmischtmlTablehtmltoolshtmlwidgetsisobanditeratorsJMjquerylibjsonliteKernSmoothknitrlabelinglatticelavalifecyclelistenvmagrittrMASSMatrixMatrixModelsmemoisemetsmgcvmimemultcompmunsellmvtnormnlmennetnumDerivparallellypecpillarpkgconfigplotrixpolsplineprodlimprogressrPublishquantregR6rangerrappdirsRColorBrewerRcppRcppArmadilloRcppEigenriskRegressionrlangrmarkdownrmsrpartrstudioapisandwichsassscalesshapeSparseMSQUAREMstringistringrsurvivalTH.datatibbletimeregtimeROCtinytexutf8vctrsviridisviridisLitewithrxfunyamlzoo