Package: PCDimension 1.1.13

Kevin R. Coombes

PCDimension: Finding the Number of Significant Principal Components

Implements methods to automate the Auer-Gervini graphical Bayesian approach for determining the number of significant principal components. Automation uses clustering, change points, or simple statistical models to distinguish "long" from "short" steps in a graph showing the posterior number of components as a function of a prior parameter. See <doi:10.1101/237883>.

Authors:Kevin R. Coombes, Min Wang

PCDimension_1.1.13.tar.gz
PCDimension_1.1.13.tar.gz(r-4.5-noble)PCDimension_1.1.13.tar.gz(r-4.4-noble)
PCDimension_1.1.13.tgz(r-4.4-emscripten)PCDimension_1.1.13.tgz(r-4.3-emscripten)
PCDimension.pdf |PCDimension.html
PCDimension/json (API)
NEWS

# Install 'PCDimension' in R:
install.packages('PCDimension', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://r-forge.r-project.org/projects/oompa

Datasets:
  • spca - Sample PCA Dataset

clustering

4.04 score 4 packages 23 scripts 694 downloads 4 mentions 14 exports 13 dependencies

Last updated 3 years agofrom:c5ed1dc5bc. Checks:1 OK, 1 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 06 2025
R-4.5-linuxNOTEJan 06 2025

Exports:agDimCPTagDimensionagDimKmeansagDimKmeans3agDimSpectralagDimTtestagDimTtest2agDimTwiceMeanAuerGervinibrokenStickbsDimensioncompareAgDimMethodsmakeAgCpmFunrndLambdaF

Dependencies:BiobaseBiocGenericschangepointClassDiscoveryclustercpmgenericskernlablatticemclustoompaBaseoompaDatazoo

PCDimension

Rendered fromPCDimension.Rnwusingutils::Sweaveon Jan 06 2025.

Last update: 2017-12-15
Started: 2017-12-15

Readme and manuals

Help Manual

Help pageTopics
Divide Steps into "Long" and "Short" to Compute Auer-Gervini DimensionagDimCPT agDimFunction agDimKmeans agDimKmeans3 agDimSpectral agDimTtest agDimTtest2 agDimTwiceMean makeAgCpmFun
Estimating Number of Principal Components Using the Auer-Gervini MethodagDimension AuerGervini AuerGervini-class PCDimension plot,AuerGervini,missing-method summary,AuerGervini-method
The Broken Stick MethodbrokenStick bsDimension
Compare Methods to Divide Steps into "Long" and "Short"compareAgDimMethods
Principal Component Statistics Based on RandomizationrndLambdaF
Sample PCA Datasetspca spca-data