Package: NetworkReg 2.0

Jianxiang Wang

NetworkReg: Generalized Linear Regression Models on Network-Linked Data with Statistical Inference

Linear regression model and generalized linear models with nonparametric network effects on network-linked observations. The model is originally proposed by Le and Li (2022) <doi:10.48550/arXiv.2007.00803> and is assumed on observations that are connected by a network or similar relational data structure. A more recent work by Wang, Le and Li (2024) <doi:10.48550/arXiv.2410.01163> further extends the framework to generalized linear models. All these models are implemented in the current package. The model does not assume that the relational data or network structure to be precisely observed; thus, the method is provably robust to a certain level of perturbation of the network structure. The package contains the estimation and inference function for the model.

Authors:Jianxiang Wang [aut, cre], Tianxi Li [aut], Can M. Le [aut]

NetworkReg_2.0.tar.gz
NetworkReg_2.0.tar.gz(r-4.5-noble)NetworkReg_2.0.tar.gz(r-4.4-noble)
NetworkReg_2.0.tgz(r-4.4-emscripten)NetworkReg_2.0.tgz(r-4.3-emscripten)
NetworkReg.pdf |NetworkReg.html
NetworkReg/json (API)

# Install 'NetworkReg' in R:
install.packages('NetworkReg', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.30 score 1 scripts 130 downloads 2 exports 69 dependencies

Last updated 22 days agofrom:06cbcb23ec. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-linuxOKNov 03 2024

Exports:net.gen.from.PSP.Inf

Dependencies:abindashAUCbitopsbootcliclustercolorspacedata.tabledeSolveentropyfansifarverfdafdsFNNgamm4ggplot2gluegrpreggtablehdrcdeirlbaisobandkernlabKernSmoothkslabelinglatticelifecyclelme4locfitmagicmagrittrMASSMatrixmclustmgcvminqamulticoolmunsellmvtnormnlmenloptrnnlspbspcaPPpillarpkgconfigpoweRlawpracmaR6rainbowrandnetRColorBrewerRcppRcppEigenRCurlrefundrlangRLRsimRSpectrascalessparseFLMMtibbleutf8vctrsviridisLitewithr