Package: kpcaIG 1.0

Mitja Briscik

kpcaIG: Variables Interpretability with Kernel PCA

The kernelized version of principal component analysis (KPCA) has proven to be a valid nonlinear alternative for tackling the nonlinearity of biological sample spaces. However, it poses new challenges in terms of the interpretability of the original variables. 'kpcaIG' aims to provide a tool to select the most relevant variables based on the kernel PCA representation of the data as in Briscik et al. (2023) <doi:10.1186/s12859-023-05404-y>. It also includes functions for 2D and 3D visualization of the original variables (as arrows) into the kernel principal components axes, highlighting the contribution of the most important ones.

Authors:Mitja Briscik [aut, cre], Mohamed Heimida [aut], Sébastien Déjean [aut]

kpcaIG_1.0.tar.gz
kpcaIG_1.0.tar.gz(r-4.5-noble)kpcaIG_1.0.tar.gz(r-4.4-noble)
kpcaIG_1.0.tgz(r-4.4-emscripten)kpcaIG_1.0.tgz(r-4.3-emscripten)
kpcaIG.pdf |kpcaIG.html
kpcaIG/json (API)

# Install 'kpcaIG' in R:
install.packages('kpcaIG', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 stars 133 downloads 4 exports 59 dependencies

Last updated 5 months agofrom:3d3883843b. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-linuxOKOct 31 2024

Exports:kernelpcakpca_igradplot_kpca2Dplot_kpca3D

Dependencies:base64encbslibcachemclicolorspacecrayondigestevaluatefansifarverfastmapfontawesomefsggplot2gluegridExtragtablehighrhmshtmltoolshtmlwidgetsisobandjquerylibjsonlitekernlabknitrlabelinglatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmepillarpkgconfigprettyunitsprogressR6rappdirsRColorBrewerrglrlangrmarkdownsassscalestibbletinytexutf8vctrsviridisviridisLiteWallomicsDatawithrxfunyaml