Package: kpcaIG 1.0.1

Mitja Briscik
kpcaIG: Variables Interpretability with Kernel PCA
The kernelized version of principal component analysis (KPCA) has proven to be a valid nonlinear alternative for tackling the nonlinearity of biological sample spaces. However, it poses new challenges in terms of the interpretability of the original variables. 'kpcaIG' aims to provide a tool to select the most relevant variables based on the kernel PCA representation of the data as in Briscik et al. (2023) <doi:10.1186/s12859-023-05404-y>. It also includes functions for 2D and 3D visualization of the original variables (as arrows) into the kernel principal components axes, highlighting the contribution of the most important ones.
Authors:
kpcaIG_1.0.1.tar.gz
kpcaIG_1.0.1.tar.gz(r-4.5-noble)kpcaIG_1.0.1.tar.gz(r-4.4-noble)
kpcaIG_1.0.1.tgz(r-4.4-emscripten)kpcaIG_1.0.1.tgz(r-4.3-emscripten)
kpcaIG.pdf |kpcaIG.html✨
kpcaIG/json (API)
# Install 'kpcaIG' in R: |
install.packages('kpcaIG', repos = 'https://cloud.r-project.org') |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 5 days agofrom:51237f39f4. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 28 2025 |
R-4.5-linux | OK | Mar 28 2025 |
R-4.4-linux | OK | Mar 28 2025 |
Exports:kernelpcakpca_igradplot_kpca2Dplot_kpca3D
Dependencies:base64encbslibcachemclicolorspacecrayondigestevaluatefansifarverfastmapfontawesomefsggplot2gluegridExtragtablehighrhmshtmltoolshtmlwidgetsisobandjquerylibjsonlitekernlabknitrlabelinglatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmepillarpkgconfigprettyunitsprogressR6rappdirsRColorBrewerrglrlangrmarkdownsassscalestibbletinytexutf8vctrsviridisviridisLiteWallomicsDatawithrxfunyaml
Citation
To cite package ‘kpcaIG’ in publications use:
Briscik M, Heimida M, Déjean S (2025). kpcaIG: Variables Interpretability with Kernel PCA. R package version 1.0.1, https://CRAN.R-project.org/package=kpcaIG.
Corresponding BibTeX entry:
@Manual{, title = {kpcaIG: Variables Interpretability with Kernel PCA}, author = {Mitja Briscik and Mohamed Heimida and Sébastien Déjean}, year = {2025}, note = {R package version 1.0.1}, url = {https://CRAN.R-project.org/package=kpcaIG}, }
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Kernel Principal Components Analysis | kernelpca |
KPCA-IG: Variables Interpretability in Kernel PCA | kpca_igrad |
2D Kernel PCA Plot with Variables Representation | plot_kpca2D |
3D Kernel PCA Plot with Variables Representation | plot_kpca3D |