Package: grpnet 0.7

Nathaniel E. Helwig

grpnet: Group Elastic Net Regularized GLMs and GAMs

Efficient algorithms for fitting generalized linear and additive models with group elastic net penalties as described in Helwig (2024) <doi:10.1080/10618600.2024.2362232>. Implements group LASSO, group MCP, and group SCAD with an optional group ridge penalty. Computes the regularization path for linear regression (gaussian), multivariate regression (multigaussian), logistic regression (binomial), multinomial logistic regression (multinomial), log-linear count regression (poisson and negative.binomial), and log-linear continuous regression (gamma and inverse gaussian). Supports default and formula methods for model specification, k-fold cross-validation for tuning the regularization parameters, and nonparametric regression via tensor product reproducing kernel (smoothing spline) basis function expansion.

Authors:Nathaniel E. Helwig [aut, cre]

grpnet_0.7.tar.gz
grpnet_0.7.tar.gz(r-4.5-noble)grpnet_0.7.tar.gz(r-4.4-noble)
grpnet_0.7.tgz(r-4.4-emscripten)grpnet_0.7.tgz(r-4.3-emscripten)
grpnet.pdf |grpnet.html
grpnet/json (API)

# Install 'grpnet' in R:
install.packages('grpnet', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • fortran– Runtime library for GNU Fortran applications
Datasets:
  • auto - Auto MPG Data Set

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

fortran

1.70 score 313 downloads 31 exports 0 dependencies

Last updated 8 days agofrom:0b9f065584. Checks:2 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 24 2025
R-4.5-linux-x86_64OKJan 24 2025

Exports:coef.cv.grpnetcoef.grpnetcv.comparecv.grpnetcv.grpnet.defaultcv.grpnet.formulafamily.grpnetgrpnetgrpnet.defaultgrpnet.formulaplot.cv.grpnetplot.grpnetpredict.cv.grpnetpredict.grpnetprint.coef.grpnetprint.cv.grpnetprint.grpnetR_grpnet_binomialR_grpnet_gammaR_grpnet_gaussianR_grpnet_invgausR_grpnet_maxeigvalR_grpnet_multigausR_grpnet_multinomR_grpnet_negbinR_grpnet_penaltyrkrk.model.matrixrow.kroneckervisualize.penaltyvisualize.shrink

Dependencies: