Package: slfm 1.0.2

Vinicius Mayrink

slfm: Fitting a Bayesian Sparse Latent Factor Model in Gene Expression Analysis

Set of tools to find coherent patterns in gene expression (microarray) data using a Bayesian Sparse Latent Factor Model (SLFM) <doi:10.1007/978-3-319-12454-4_15>. Considerable effort has been put to build a fast and memory efficient package, which makes this proposal an interesting and computationally convenient alternative to study patterns of gene expressions exhibited in matrices. The package contains the implementation of two versions of the model based on different mixture priors for the loadings: one relies on a degenerate component at zero and the other uses a small variance normal distribution for the spike part of the mixture.

Authors:Vinicius Mayrink [aut, cre], Joao Duarte [aut]

slfm_1.0.2.tar.gz
slfm_1.0.2.tar.gz(r-4.5-noble)slfm_1.0.2.tar.gz(r-4.4-noble)
slfm_1.0.2.tgz(r-4.4-emscripten)slfm_1.0.2.tgz(r-4.3-emscripten)
slfm.pdf |slfm.html
slfm/json (API)
NEWS

# Install 'slfm' in R:
install.packages('slfm', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

1.00 score 1 scripts 146 downloads 4 exports 4 dependencies

Last updated 1 years agofrom:ed34066e57. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 23 2024
R-4.5-linux-x86_64OKDec 23 2024

Exports:plot_matrixprocess_matrixslfmslfm_list

Dependencies:codalatticeRcppRcppArmadillo