Package: CovSel 1.2.1

Jenny Häggström

CovSel: Model-Free Covariate Selection

Model-free selection of covariates under unconfoundedness for situations where the parameter of interest is an average causal effect. This package is based on model-free backward elimination algorithms proposed in de Luna, Waernbaum and Richardson (2011). Marginal co-ordinate hypothesis testing is used in situations where all covariates are continuous while kernel-based smoothing appropriate for mixed data is used otherwise.

Authors:Jenny Häggström, Emma Persson,

CovSel_1.2.1.tar.gz
CovSel_1.2.1.tar.gz(r-4.5-noble)CovSel_1.2.1.tar.gz(r-4.4-noble)
CovSel_1.2.1.tgz(r-4.4-emscripten)CovSel_1.2.1.tgz(r-4.3-emscripten)
CovSel.pdf |CovSel.html
CovSel/json (API)

# Install 'CovSel' in R:
install.packages('CovSel', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • datc - Simulated Data, Continuous
  • datf - Simulated Data, Factors
  • datfc - Simulated Data, Mixed
  • lalonde - Real data, Lalonde

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.02 score 1 stars 21 scripts 181 downloads 5 mentions 1 exports 13 dependencies

Last updated 9 years agofrom:4a904805bc. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 02 2024
R-4.5-linuxOKNov 02 2024

Exports:cov.sel

Dependencies:bootcubaturedrlatticeMASSMatrixMatrixModelsnpquadprogquantregRcppSparseMsurvival