Package: qcluster 1.2

Luca Coraggio

qcluster: Clustering via Quadratic Scoring

Performs tuning of clustering models, methods and algorithms including the problem of determining an appropriate number of clusters. Validation of cluster analysis results is performed via quadratic scoring using resampling methods, as in Coraggio, L. and Coretto, P. (2023) <doi:10.1016/j.jmva.2023.105181>.

Authors:Luca Coraggio [cre, aut], Pietro Coretto [aut]

qcluster_1.2.tar.gz
qcluster_1.2.tar.gz(r-4.5-noble)qcluster_1.2.tar.gz(r-4.4-noble)
qcluster_1.2.tgz(r-4.4-emscripten)qcluster_1.2.tgz(r-4.3-emscripten)
qcluster.pdf |qcluster.html
qcluster/json (API)
NEWS

# Install 'qcluster' in R:
install.packages('qcluster', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblas

1.00 score 12 exports 5 dependencies

Last updated 17 days agofrom:d90b32adc4. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 06 2024
R-4.5-linux-x86_64OKDec 06 2024

Exports:bqsbqs_rankbqs_selectclust2paramsgmixmbindmset_gmixmset_kmeansmset_pammset_userplot_clusteringqscore

Dependencies:clustercodetoolsdoParallelforeachiterators