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banknote Swiss Banknotes Data

Description

Data from Tables 1.1 and 1.2 (pp. 5-8) of Flury and Riedwyl (1988). There are six measurements
made on 200 Swiss banknotes (the old-Swiss 1000-franc). The banknotes belong to two classes of
equal size: genuine and counterfeit.

Usage

data(banknote)

Format

A data.frame of dimension 200x7 with the following variables:

Class a factor with classes: genuine, counterfeit

Length Length of bill (mm)

Left Width of left edge (mm)

Right Width of right edge (mm)

Bottom Bottom margin width (mm)

Top Top margin width (mm)

Diagonal Length of diagonal (mm)

Source

Flury, B. and Riedwyl, H. (1988). Multivariate Statistics: A practical approach. London: Chapman
& Hall.
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bqs Bootstrapping quadratic scores

Description

Estimates the expected quadratic score for clustering solutions provided by a list of of candidate
model, methods or algorithmic setting.

Usage

bqs(data,
methodset,
B = 10,
type = "smooth",
oob = FALSE,
ncores = detectCores() - 2,
alpha = 0.05,
rankby = ifelse(B == 0, "mean", "lq"),
boot_na_share = 0.25,
savescores = FALSE,
saveparams = FALSE)

Arguments

data a numeric vector, matrix, or data frame of observations. Rows correspond to ob-
servations and columns correspond to variables/features. Categorical variables
and NA values are not allowed.

methodset a list of functions. A function in the list takes data as input and provide a
clustering method to be scored (see Details).

B a integer >=0. If B=0, the funciton fits and scores the clustering methods on
the entire data set without resampling (see Details). B>=1, sets the number of
boostrap replicates (see Details).

type character string specifying the type of score, Possibile values are {"smooth",
"hard", "both"}. If ="smooth" (default), only the smooth score is estimated.
If ="hard", only the hard score is estimated. ="both", both the smooth and the
hard scores are estimated.

oob logical or character string specifying if out-of-bag bootstrap is performed. Pos-
sibile values are {FALSE, TRUE, "only"} If =FALSE (default), out-of-bag boos-
trap is not performed. If =TRUE, out-of-bag bootstrap is performed along with
the empirical bootstrap sampling. If ="only", only the out-of-bag bootstrap is
performed.

ncores an integer, it defines the number of cores used for parallel computing (see De-
tails).

alpha a number in (0,1), the confidence-level for empirical bootstrap quantiles (both-
tails).
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rankby character string specifying how the scored solution are ranked. Possible val-
ues are {"lq", "mean", "1se"}. With ="lq" (default), the solutions are ranked
by maximizing the estimated lower limit of the of the 1-alpha bootstrap con-
fidence intervalfor the expected score. With ="mean", the solutions are ranked
by maximizing the estimated expected score. With ="1se", the solutions are
ranked by maximizing the estimated lower limit of the confidence interval for
the expected score whose semi-length is equal to a standard error. The expected
score’s standard error is approximated using the boostrap distribution.

boot_na_share a numeric value in (0,1). During the boostrapping a method’s score is set to NA
if the underlying comptutation runs into errors. Methods resulting in more than
B * boot_na_share errors are excluded from the comparison

savescores logical, if =TRUE it returns estimated scores for each boostrap sample.

saveparams logical, if =TRUE it returns estimated cluster parameters for each boostrap sam-
ple.

Details

The function implements the estimation and selection of an appropriate clustering based on the
methodology proposed in Coraggio and Coretto (2023). In addition, we add the possibility of
obtaining score estimates using out-of-bag-boorstrap sampling alongside the empirical bootstrap-
based estimates proposed in the aforementioned paper. Note that the out-of-bag-boorstrap estimates
are obtained using the same samples used for the emprical bootsrap, therefore, oob=TRUE add a
small computational cost.

Choice of B. In theory B should be as large as possible, however, if the list of methods is large and
the computational capacity is modest, a large B may require long run times. Coraggio and Coretto
(2023) show experiments where changing from B=1000 to B=100 introduces a marginal increase in
variability. B=100 should be considered as a lower bound. In the case where one has very large
method lists, high-dimensional datasets and demanding methods, a possible strategy to reduce the
computational cost is as follows:

1. set a small value of B, e.g., B=50 or even less.

2. Analyze the methods’ ranking and identify those methods that report score values that are
small compared to the top performers.

3. Narrow down the methodset list and repeat the bootstrap estimation with a value of B that is
as large as possible relative to available computational resources.

Parallel computing. Bootstrap sampling is performed using foreach-based parallel computation
via the doParallel parallel backend. Note that depending on the system settings, and how the func-
tions in methodset make use of parallelism and/or multi-threading computing, increasing ncores
may not produce the desired reduction in computing time. For instance, this happens when using
linear algebra routines optimized for multi-threaded computing (e.g., OpenBLAS, Intel Math Kernel
Library (MKL), and so on). These optimized shared libraries already implement multi-threading,
and it is necessary to find the optimal trade-off between distributing processes over physical cores
and multi-threading at the logical unit level of the same physical unit. Unfortunately, there is no
universal recipe and much depends on hardware architectures, operating system, shared libraries,
etc. We obtained the best results using OpenBLAS (the tagged serial) and setting ncores= the
number of physical cores.
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methodset argument. The methodset argument allows in input a function, list, or output from
mset functions: mset_user, mset_gmix, mset_kmeans, mset_pam. It is also possible give any
combination of these, concatenated with the mbind function. When passing a function, either as
a single element or in a list, this must take the data set as its first argument, and must return in
output at least list named "params", conforming with the return value of clust2params, i.e. a list
containing proportion, mean and cov elements, representing the estimated clusters’ parameters.

Value

An S3 object of class bqs. Output components are as follows:

smooth data.frame returned if type="smooth" or type="both". It contains a sum-
mary of the estimated score. The rows corresponds to competing methods in
methodset sorted by the specified ranking criterion. Columns are as follows:

id: index of the method in the corresponding methodset list;
rank: rank of the clustering solution according to rankby;
mean: expected score;
sterr standard error for the mean score;
lower_qnt: lower limit of the confidence interval for the mean score;
upper_qnt: upper limit of the confidence interval for the mean score;
n_obs: number of valid bootstrap samples after filtering erroneous cases;
n_missing: number of filtered erroneous cases.

hard data.frame returned if type="hard" or type="both". It reports the results about
the hard score in analogy to the previous object smooth.

obb_smooth data.frame returned if type="smooth" or type="both" and obb=TRUE or obb="only".
It reports the results about the smooth score estimated using out-of-bang-boostrap
samples in analogy to the previous objects smooth and hard.

obb_hard data.frame returned if type="hard" or type="both" and obb=TRUE or obb="only".
It reports the results about the hard score estimated using out-of-bang-boostrap
samples in analogy to the previous objects smooth and hard.

best_smooth Clustering produced by the best method, according the specified rankby crite-
rion, applied to the smooth score estimated using the empirical bootstrap sam-
pling.

best_hard clustering produced by the best method, according the specified rankby crite-
rion, applied to the hard score estimated using the empirical bootstrap sampling.

best_obb_smooth

clustering produced by the best method, according the specified rankby crite-
rion, applied to the smooth score estimated using the out-of-bag-boostrap sam-
ples.

best_obb_hard clustering produced by the best method, according the specified rankby crite-
rion, applied to the hard score estimated using the out-of-bag-boostrap samples.

data a list containing information about the input data set necessary for the fruition
of the returned object.

B number of bootstrap replicates.

methodset The elements of methodset for which a solution is produced.
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rankby the ranking criterion.

raw a list that allows tracing the bootstrap sampling in almost every stage. Let
n=sample size, B=bootstrap samples, M= number of methods in methoset. It
contains the following objects.

boot_id: an array of dimension n x B where the j-th column contains the in-
dexes of the observed data points belonging to the j-th bootstrap sample.
That is, data[boot_id[ ,j], ] gives the j-th bootstrap data set.

scores: an array of dimension (M x 3 x B) returned if savescores=TRUE. It
reports both hard and smooth scores estimated in each bootstrap replicate.
score[,1,] reports a code=1 if the corresponding bootstrap sample has
been excluded because of errors (otherwise code=0).

oob_scores: returned if obb=TRUE or obb="only" and savescores=TRUE. It is
an array is organized as the previous object score but contains information
about out-of-bag-bootstrap estimates.

params: a list returned if saveparams=TRUE. params[[m]] contains estimated
cluster parameters for methodset[[m]] where m=1,...,M. Each member
of the list is a list of length B where params[[m]][[b]] contains the cluster
parameters fitted by the m-th method on the b-th bootstrap sample.

References

Coraggio, Luca and Pietro Coretto (2023). Selecting the number of clusters, clustering models, and
algorithms. A unifying approach based on the quadratic discriminant score. Journal of Multivariate
Analysis, Vol. 196(105181), 1-20. doi: doi:10.1016/j.jmva.2023.105181

See Also

mset_user, mset_gmix, mset_kmeans, pam, mbind, clust2params

Examples

# load data
data("banknote")
dat <- banknote[-1]

## set up methods
## see also help('mset_user') and related functions
KM <- mset_kmeans(K = 3)
GMIX <- mset_gmix(K=3, erc=c(1,100))

# combine tuned methods
mlist <- mbind(KM, GMIX)

# perform bootstrap
# change B and ncores to a much larger value in real problems
res <- bqs(dat, mlist, B = 3, type = "both", rankby="lq",

ncores = 1, oob = TRUE, savescores = TRUE, saveparams = FALSE)
res

https://doi.org/10.1016/j.jmva.2023.105181
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## Not run:
# The following example is more realistic but may take time
# ----------------------------------------------------------
# load data
data("banknote")
dat <- banknote[-1]

# set up kmeans, see help('mset_kmeans')
KM <- mset_kmeans(K = 2:5)

# set up Gaussian model-based clustering via gmix()
GMIX <- mset_gmix(K=2:5, erc=c(1, 50 , 100))

# set up Gaussian model-based clustering via library("mclust")
# see examples in help('mset_user')
require(mclust)
mc_wrapper <- function(data, K, ...){

y <- Mclust(data, G = K, ...)
y[["params"]] <- list(proportion = y$parameters$pro,

mean = y$parameters$mean,
cov = y$parameters$variance$sigma)

return(y)
}

MC <- mset_user(fname = "mc_wrapper", K = 2:5, modelNames = c("EEI", "VVV"))

# combine tuned methods
mlist <- mbind(KM, GMIX, MC)

# perform bootstrap
# set 'ncores' to the number of available physical cores
res <- bqs(dat, mlist, B = 100, type = "both", rankby="lq", ncores=1,

oob = TRUE, savescores = TRUE, saveparams = FALSE)
res

## End(Not run)

bqs_rank Ranking Clusters Quadratic Scores Estimated Via Boostrap

Description

Ranks the scores of clusters methods estimated via boostrap

Usage

bqs_rank(bqsol, rankby = "lq", boot_na_share = 0.25)
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Arguments

bqsol an object of class bqs obtained from bqs.

rankby character string specifying how the scored solution are ranked. Possible val-
ues are {"lq", "mean", "1se"}. With ="lq" (default), the solutions are ranked
by maximizing the estimated lower limit of the of the 1-alpha bootstrap con-
fidence intervalfor the expected score. With ="mean", the solutions are ranked
by maximizing the estimated expected score. With ="1se", the solutions are
ranked by maximizing the estimated lower limit of the confidence interval for
the expected score whose semi-length is equal to a standard error. The expected
score’s standard error is approximated using the boostrap distribution.

boot_na_share a numeric value in (0,1). During the boostrapping a method’s score is set to NA
if the underlying comptutation runs into errors. Methods resulting in more than
B * boot_na_share errors are excluded from the comparison

Value

An S3 object of class bqs. Output components are those of bqs. See Value in bqs.

References

Coraggio, Luca and Pietro Coretto (2023). Selecting the number of clusters, clustering models, and
algorithms. A unifying approach based on the quadratic discriminant score. Journal of Multivariate
Analysis, Vol. 196(105181), 1-20. doi: doi:10.1016/j.jmva.2023.105181

See Also

bqs

Examples

# load data
data("banknote")
dat <- banknote[-1]

## set up methods
## see also help('mset_user') and related functions
KM <- mset_kmeans(K = 3)
GMIX <- mset_gmix(K=3, erc=c(1,100))

# combine tuned methods
mlist <- mbind(KM, GMIX)

# perform bootstrap
# change B and ncores to a much larger value in real problems
res <- bqs(dat, mlist, B = 3, rankby="lq", ncores=1)
res

# now change ranking criterion
res2 <- bqs_rank(res, rankby="mean")

https://doi.org/10.1016/j.jmva.2023.105181
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res2

bqs_select Select Ranked Cluster Solutions by Quadratic Score

Description

Select solutions from a bqs object based on specified rank and type of score.

Usage

bqs_select(bqs_sol, rank = 1, type = "smooth", rankby = NA, boot_na_share = 0.25)

Arguments

bqs_sol An object of class bqs containing the clustering solutions to be selected.

rank An integer >0 specifying the rank of the solution to select. Default is 1.

type A character string specifying the type of Quadratic Score. Possible values are
"hard", "smooth", "oob_hard", "oob_smooth". Default is "smooth".

rankby A character string specifying the criteria used to rank solutions in bqs. Possible
values are "lq", "mean", "1se", or NA (default). See Details.

boot_na_share A numeric value between (0, 1). Clustering solutions in bqs_sol with a share
of NA bootstrap estimates are excluded from ranking. Default is 0.25.

Details

Even if the bqs_sol object is not pre-ranked, the user may specify a ranking criterion to rank
clustering solutions dynamically using the rankby argument; this does not influence the bqs_sol
ranking. In these instances, the user can also specify boot_na_share as in bqs_rank to exclude
solutions based on the proportion of unsuccessful bootstrap estimations. If rankby=NA, the bqs_sol
must be pre-ranked.

Value

A named list of all clustering solutions achieving a type score of rank rank when ranked according
to rankby criterion, or NULL if no such solution is available in the bqs_sol object. List names
correspond to methods’ names, and each named entry contains the corresponding clustering method
in bqs_sol$methodlist fit on bqs_sol$data.

See Also

bqs, bqs_rank
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Examples

# Load data and set seet
set.seed(123)
data("banknote")
dat <- banknote[-1]

# set up kmeans, see help('mset_kmeans')
KM <- mset_kmeans(K = 2:5)

# set up Gaussian model-based clustering via gmix()
GMIX <- mset_gmix(K=2:5, erc=c(1, 50 , 100))

# combine tuned methods
mlist <- mbind(KM, GMIX)

# perform bootstrap
# se 'ncores' to the number of available physical cores
res <- bqs(dat, mlist, B = 20, type = "both", rankby=NA, ncores = 1,

oob = TRUE, savescores = TRUE, saveparams = FALSE)

# Methods are not ranked; this will raise an error
try(bqs_select(res, rank = 1))

# Rank method dynamically
ranked_res <- bqs_select(res, rank = 2, rankby = "lq", boot_na_share = 0.25)
names(ranked_res)

clust2params Converts Hard Assignment Into Cluster Parameters

Description

Transforms cluster labels into a list of parameters describing cluster size, mean, and dispersion.

Usage

clust2params(data, cluster)

Arguments

data a numeric vector, matrix, or data frame of observations. Rows correspond to ob-
servations and columns correspond to variables/features. Categorical variables
and NA values are not allowed.

cluster a vector of integers representing cluster labels.
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Value

A list containing cluster parameters. Let P=number of variable/features and K=number of clusters.
The elements of the list are as follows:

• prop: a vector of clusters’ proportions;

• mean: a matrix of dimension (P x K) containing the clusters’ mean parameters;

• cov: an array of size (P x P x K) containing the clusters’ covariance matrices.

Examples

# load data
data("banknote")

# compute the k-means partition
set.seed(2024)
cl <- kmeans(banknote[-1], centers = 2, nstart = 1)$cluster

# convert k-means hard assignment into cluster parameters
clpars <- clust2params(banknote[-1], cl)
clpars

gmix Gaussian Mixture Modelling

Description

Fast implementation of the EM algorithm for ML estimation and clustering of Gaussian mixture
models with covariance matrix regularization based on eigenvalue ratio constraints.

Usage

gmix(
data,
K = NA,
erc = 50,
iter.max = 1000,
tol = 1e-8,
init = "kmed",
init.nstart = 25,
init.iter.max = 30,
init.tol = tol,
save_cluster = TRUE,
save_params = TRUE,
save_taus = FALSE)
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Arguments

data a numeric vector, matrix, or data frame of observations. Rows correspond to
observations and columns correspond to variables/features. Let N=nrows(data)
and P=ncol(data). Categorical variables and NA values are not allowed.

K the number of mixture components or clusters. It can be left NA for certain
specifications of init (see below) where the number of cluster is retrieved from
the initial partition.

erc a numeric value >=1 specifying the eigenvalue ratio constraint (See Details).

iter.max maximum number of iterations for the EM algorithm.

tol tolerance for the convergence of the EM algorithm.

init a character in the set c("kmed", "kmeans", "pam"), a vector, a matrix, or a
callable giving the initial assignment of data points (see Details). The default
choice is "kmed".

init.nstart number of initial partitions ((see Details)).

init.iter.max maximum number of iterations for each run of the kmedian initialization.

init.tol tolerance for the convergence of each ran of the kmedian initialization.

save_cluster logical, if TRUE the point-to-cluster assignment based on the maximum a poste-
riori probability (MAP) rule is returned.

save_params logical, if TRUE the estimated mixture parameters are returned.

save_taus logical, if TRUE the posterior class probabilities are returned (these are also
known as posterior weights or fuzzy weights).

Details

The function implements the constrained ML estimator studied in Coretto and Hennig (2023). The
convariance matrix constraints are computed according to the CM1-step of Algorithm 2 of Coretto
and Hennig (2017). This function uses highly optimized C code for fast execution. The constrained
M-step extensively uses low-level common linear algebra matrix operations (BLAS/LAPACK rou-
tines). Consequently, to maximize computational efficiency, it is recommended that the best avail-
able shared libraries, such as OpenBLAS, Intel Math Kernel Library (MKL), etc., be set up.

Initialization. The default method, set with init="kmed", uses fast C implementation of the
k-medians algorithm with random initial centers drawn uniformly over the data rows init.iter.max
times. Depending on the computer power available it is suggested to set init.iter.max as large as
possible particularly in cases where the data set dimensionality is large in terms of both sample size
and number of features. Setting init="kmeans" one replaces the K-medians with the K-means.
With init="pam" initial clusters are determined using the PAM algorithm based on Euclidian dis-
tances. The latter does not perform multiple starts. The user can also set init = x where x is a
vector of integers of length N=nrow(data) representing an initial hard assignment of data points to
the mixture components or clusters (see Examples). Another possibility is to set init = W where W
is a matrix of dimension (N x {K}) containing the initial posterior probabilities that the ith obser-
vation belongs to the kth cluster. The assignment provided via W can be hard (0-1 weights with the
constraint that only a 1 is possible in each row of W, or smooth (each row of W must sum up to 1). W
can be seen as the initial version of the object tau describied in the Value section below. The last
alternative is to set init = f(data). Here f(data) is a function that takes data as an input and
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returns the matrix with an initial hard/smooth assignment as the W matrix previously described (see
the example below).

Eigenvalue ratio constraint (erc). It is the maximum allowed ratio between within-cluster covari-
ance matrix eigenvalues. It defines the so-called eigenratio constraint. erc=1 enforces spherical
clusters with equal covariance matrices. A large erc allows for large between-cluster covariance
discrepancies. It is suggested to never set erc arbitrarily large, its main role is to prevent degenerate
covariance parameters and the related emergence of spurious clusters (see Referenceses below). Fi-
nally, in order to facilitate the setting of erc, it is suggested to scale the columns of data whenever
measurement units of the different variables are grossly incompatible.

Value

An S3 object of class 'mbcfit'. Output components are as follows:

info information on convergence and errors (see notes).

iter number of iterations performed in the underlying EM-algorithm.

N number of data points.

P data dimension.

K number of clusters.

eloglik sample expected log-likelihood.

size cluster size (counts).

cluster cluster assignment based on the maximum a posteriori rule (MAP).

taus a matrix of dimension (N x {K}) where tau[i, k] is the estimated posterior
probability that the ith observation belongs to the kth cluster.

params a list containing mixture components parameters. The elements of the list are
as follows: $prop=vector of proportions; $mean==matrix of dimension (P x K)
containing mean parameters; $cov=array of size (P x P x K) containing covari-
ance matrices.

info a list with two components named giving information about underlysing EM
algorithm. The code obejects can take the following values:

• code=1: the algorithm converged within iter.max.
• code=2: the algorithm reached iter.max.
• code=3: the algorithm did not move from initial values.
• code=-1: unexpected memory allocation issues occured.
• code=-2: unexpected LAPACK routines errors occured.

The flag obejects can take the following values:

• flag=0 no flag.
• flag=1 numerically degenerate posterior probabilities. (taus) could not be

prevented.
• flag=2 the ERC was enforced at least once.
• flag=3 if condition of flag=1 and flag=2 occurred.
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References

Coretto, Pietro and Christian Hennig (2017). Consistency, breakdown robustness, and algorithms
for robust improper maximum likelihood clustering. Journal of Machine Learning Research, Vol.
18(142), pp. 1-39. URL: https://jmlr.org/papers/v18/16-382.html

Coretto, Pietro and Christian Hennig (2023) Nonparametric consistency for maximum likelihood
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URL: https://arxiv.org/abs/2311.06108

Examples

# --- load data
data("banknote")
dat <- banknote[-1]
n <- nrow(dat) #sample size
nc <- 2 #number of clusters

# fit 2 clusters using the default k-median initialization
# In real applications set 'init.nstart' as large as possibile
set.seed(101)
fit1 <- gmix(dat, K = nc, init.nstart = 1)
print(fit1)

# plot partition (default)
plot(x = fit1, data = dat)

# plot partition onto the first 3 principal component coordinates
plot(x = fit1, data = prcomp(dat)$x, margins = c(1,2,3),

pch_cl = c("A", "B"), col_cl = c("#4285F4", "#0F9D58"),
main = "Principal Components")

# user-defined random initialization with hard assignment labels
set.seed(102)
i2 <- sample(1:nc, size = n, replace = TRUE)
fit2 <- gmix(dat, K = 2, init = i2)
plot(x=fit2, data = dat)

# user-defined smooth "toy" initialization:
# 50% of the points are assigned to cluster 1 with probability 0.95 and to
# cluster 2 with probability 5%. The remaining data points are assigned to
# cluster 1 with probability 10% and to cluster 2 with probability 10%
#
set.seed(103)
idx <- sample(c(TRUE, FALSE), size = n, replace = TRUE)
i3 <- matrix(0, nrow = n, ncol = nc)

https://jmlr.org/papers/v18/16-382.html
https://arxiv.org/abs/2311.06108
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i3[idx, ] <- c(0.9, 0.1)
i3[!idx, ] <- c(0.1, 0.9)
# fit
fit3 <- gmix(dat, K = nc, init = i3)
plot(x=fit3, data = dat)

# user-defined function for initialization
# this one produces a 0-1 hard posterior matrix W based on kmeans
#
compute_init <- function(data, K){

cl <- kmeans(data, K, nstart=1, iter.max=10)$cluster
W <- sapply(seq(K), function(x) as.numeric(cl==x))
return(W)

}
fit4 <- gmix(dat, K = nc, init = compute_init)
plot(fit4, data = dat)

mbind Combines Methods Settings

Description

The function combines functions containing clustering methods setups built using mset_user and
related functions.

Usage

mbind(...)

Arguments

... one or more object of class qcmethod obtained from mset_user and related
functions

Value

An S3 object of class 'qcmethod'. Each element of the list represents a competing method con-
taining the following objects

fullname a string identifying the setup.
callargs a list with arguments that are passed to the base function.
fn the function implementing the specified setting. This fn function can be exe-

cuted on the data set. It has two arguments: data and only_params. data is a
data matrix or data.frame only_params is logical. If only_params==FALSE (de-
fault), fn will return the object returned by the fname. If only_params==TRUE
(default) fn will return only cluster parameters (proportions, mean, and cov, see
clust2params).



16 mset_gmix

References

Coraggio, Luca and Pietro Coretto (2023). Selecting the number of clusters, clustering models, and
algorithms. A unifying approach based on the quadratic discriminant score. Journal of Multivariate
Analysis, Vol. 196(105181), 1-20. doi: doi:10.1016/j.jmva.2023.105181

See Also

mset_user, mset_gmix, mset_kmeans, mset_pam

Examples

# load data
data("banknote")
dat <- banknote[-1]

# generate kmeans setups
A <- mset_kmeans(K=c(2,3))

# generate gmix setups
B <- mset_gmix(K=c(2,3))

# combine setups
M <- mbind(A, B)

# get the PAM setting with K=3
m <- M[[4]]
m

# cluster data with M[[3]]
fit <- m$fn(dat)
fit

mset_gmix Generates Methods Settings for Gaussian Mixture Model-Based Clus-
tering

Description

The function generates a software abstraction of a list of clustering models implemented through a
set of tuned methods and algorithms. In particular, it generates a list ofgmix -type functions each
combining model tuning parameters and other algorithmic settings. The generated functions are
ready to be called on the data set.

Usage

mset_gmix(
K = seq(10),
init = "kmed",

https://doi.org/10.1016/j.jmva.2023.105181
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erc = c(1, 50, 1000),
iter.max = 1000,
tol = 1e-8,
init.nstart = 25,
init.iter.max = 30,
init.tol = tol)

Arguments

K a vector/list, specifies the number of clusters.
init a vector, contains the settings of the init parameter of gmix.
erc a vector/list, contains the settings of the erc parameter of gmix.
iter.max a integer vector, contains the settings of the iter.max parameter of gmix.
tol a vector/list, contains the settings of the tol parameter of gmix.
init.nstart a integer vector, contains the settings of the init.start parameter of gmix.
init.iter.max a integer vector, contains the settings of the init.iter.max parameter of gmix.
init.tol a vector/list, contains the settings of the init.tol parameter of gmix.

Details

The function produces functions implementing competing clustering methods based on several
Gaussian Mixture models specifications. The function produces functions for fitting competing
Gaussian Mixture model-based clustering methods settings. This is a specialized version of the
more general function mset_user. In particular, it produces a list of gmix functions each corre-
sponding to a specific setup in terms of both model hyper-parameters (e.g. the number of clusters,
the eigenvalue ratio constraint, etc.) and algorithm’s control parameters (e.g. the type of initializa-
tion, maximum number of iteration, etc.). See gmix for a detailed description of the role of each
argument and their data types.

Value

An S3 object of class 'qcmethod'. Each element of the list represents a competing method con-
taining the following objects

fullname a string identifying the setup.
callargs a list with gmix function arguments.
fn the function implementing the specified setting. This fn function can be exe-

cuted on the data set. It has two arguments: data and only_params. data is
a data matrix or data.frame only_params is logical. If only_params==FALSE
(default), fn will return the object returned by gmix. If only_params==TRUE
(default) fn will return only cluster parameters (proportions, mean, and cov, see
clust2params.

References

Coraggio, Luca, and Pietro Coretto (2023). Selecting the Number of Clusters, Clustering Models,
and Algorithms. A Unifying Approach Based on the Quadratic Discriminant Score. Journal of
Multivariate Analysis, Vol. 196(105181), pp. 1-20, doi:10.1016/j.jmva.2023.105181

https://doi.org/10.1016/j.jmva.2023.105181
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See Also

gmix, mset_user, bqs

Examples

# 'gmix' settings combining number of clusters K={3,4} and eigenvalue
# ratio constraints {1,10}
A <- mset_gmix(K = c(2,3), erc = c(1,10))

# select setup 1: K=2, erc = 1, init =" kmed"
ma1 <- A[[1]]
print(ma1)

# fit M[[1]] on banknote data
data("banknote")
dat <- banknote[-1]
fit1 <- ma1$fn(dat)
fit1

# if only cluster parameters are needed
fit1b <- ma1$fn(dat, only_params = TRUE)
fit1b

# include a custom initialization, see also help('gmix')
compute_init <- function(data, K){

cl <- kmeans(data, K, nstart=1, iter.max=10)$cluster
W <- sapply(seq(K), function(x) as.numeric(cl==x))
return(W)

}

# generate methods settings
B <- mset_gmix(K = c(2,3), erc = c(1,10), init=c(compute_init, "kmed"))

# select setup 2: K=2, erc=10, init = compute_init
mb2 <- B[[2]]
fit2 <- mb2$fn(dat)
fit2

mset_kmeans Generates Methods Settings for K-Means Clustering

Description

The function generates a software abstraction of a list of clustering models implemented through a
set of tuned methods and algorithms. In particular, it generates a list of kmeans-type functions each
combining tuning parameters and other algorithmic settings. The generated functions are ready to
be called on the data set.
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Usage

mset_kmeans(K = c(1:10),
iter.max = 50,
nstart = 30,
algorithm = "Hartigan-Wong",
trace = FALSE)

Arguments

K a vector, specifies the number of clusters.

iter.max a vector, contains the settings of the iter.max parameter of kmeans.

nstart a vector, contains the settings of the nstart parameter ofkmeans.

algorithm a vector, contains the settings of the algorithm parameter of kmeans.

trace a vector, contains the settings of the trace parameter of kmeans.

Details

The function produces functions implementing competing clustering methods based on the K-
Means methodology as implemented in kmeans. This is a specialized version of the more general
function mset_user. In particular, it produces a list of kmeans functions each corresponding to a
specific setup in terms of hyper-parameters (e.g. the number of clusters) and algorithm’s control
parameters (e.g. initialization). See kmeans for more detail for a detailed description of the role of
each argument and their data types.

Value

An S3 object of class 'qcmethod'. Each element of the list represents a competing method con-
taining the following objects

fullname a string identifying the setup.

callargs a list with kmeans function arguments.

fn the function implementing the specified setting. This fn function can be exe-
cuted on the data set. It has two arguments: data and only_params. data is
a data matrix or data.frame only_params is logical. If only_params==FALSE
(default), fn will return the object returned by kmeans. If only_params==TRUE
(default) fn will return only cluster parameters (proportions, mean, and cov, see
clust2params.

References

Coraggio, Luca, and Pietro Coretto (2023). Selecting the Number of Clusters, Clustering Models,
and Algorithms. A Unifying Approach Based on the Quadratic Discriminant Score. Journal of
Multivariate Analysis, Vol. 196(105181), pp. 1-20, doi:10.1016/j.jmva.2023.105181

See Also

kmeans, mset_user, bqs

https://doi.org/10.1016/j.jmva.2023.105181
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Examples

# 'pam' settings combining number of clusters K={2,3}, and dissimilarities {euclidean, manhattan}
A <- mset_pam(K = c(2,3), metric = c("euclidean", "manhattan"))

# select setup 1: K=2, metric = "euclidean"
m <- A[[1]]
print(m)

# cluster with the method set in 'ma1'
data("banknote")
dat <- banknote[-1]
fit1 <- m$fn(dat)
fit1
class(fit1)

# if only cluster parameters are needed
fit2 <- m$fn(dat, only_params = TRUE)
fit2

mset_pam Generates Methods Settings for Partitioning Around Medoids (Pam)
Clustering

Description

The function generates a software abstraction of a list of clustering models implemented through the
a set of tuned methods and algorithms. In particular, it generates a list of pam-type functions each
combining tuning parameters and other algorithmic settings. The generated functions are ready to
be called on the data set.

Usage

mset_pam(K = seq(10),
metric = "euclidean",
medoids = if (is.numeric(nstart)) "random",
nstart = if (variant == "faster") 1 else NA,
stand = FALSE,
do.swap = TRUE,
variant = "original",
pamonce = FALSE)

Arguments

K a vector/list, specifies the number of clusters.

metric a vector, contains the settings of the metric parameter of pam.

medoids list, contains the settings of the medoids parameter of pam.

nstart a vector, contains the settings of the nstart parameter of pam.
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stand a vector, contains the settings of the stand parameter of pam.

do.swap a vector, contains the settings of the do.swap parameter of pam.

variant a list, contains the settings of the variant parameter of pam.

pamonce a vector, contains the settings of the pamonce parameter of pam.

Details

The function produces functions implementing competing clustering methods based on the PAM
clustering methodology as implemented in pam. This is a specialized version of the more general
function mset_user. In particular, it produces a list of pam functions each corresponding to a
specific setup in terms of hyper-parameters (e.g. the number of clusters) and algorithm’s control
parameters (e.g. initialization). See pam for more detail for a detailed description of the role of each
argument and their data types.

Value

An S3 object of class 'qcmethod'. Each element of the list represents a competing method con-
taining the following objects

fullname a string identifying the setup.

callargs a list with pam function arguments.

fn the function implementing the specified setting. This fn function can be exe-
cuted on the data set. It has two arguments: data and only_params. data is
a data matrix or data.frame only_params is logical. If only_params==FALSE
(default), fn will return the object returned by pam. If only_params==TRUE (de-
fault) fn will return only cluster parameters (proportions, mean, and cov, see
clust2params.

References

Coraggio, Luca, and Pietro Coretto (2023). Selecting the Number of Clusters, Clustering Models,
and Algorithms. A Unifying Approach Based on the Quadratic Discriminant Score. Journal of
Multivariate Analysis, Vol. 196(105181), pp. 1-20, doi:10.1016/j.jmva.2023.105181

See Also

pam,mset_user, bqs

Examples

# 'pam' settings combining number of clusters K={2,3}, and dissimilarities {euclidean, manhattan}
A <- mset_pam(K = c(2,3), metric = c("euclidean", "manhattan"))

# select setup 1: K=2, metric = "euclidean"
m <- A[[1]]
print(m)

# cluster with the method set in 'm'

https://doi.org/10.1016/j.jmva.2023.105181
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data("banknote")
dat <- banknote[-1]
fit1 <- m$fn(dat)
fit1
class(fit1)

# if only cluster parameters are needed
fit1b <- m$fn(dat, only_params = TRUE)
fit1b

mset_user Generates Clustering Methods Settings for a Prototype Methodology
Provided by the User

Description

The function generates a software abstraction of a list of clustering models implemented through
the a set of tuned methods and algorithms. The base clustering methodology is provided via a user-
defined function. The latter prototype is exapanded in a list of fucntions each combining tuning
parameters and other algorithmic settings. The generated functions are ready to be called on the
data set.

Usage

mset_user(fname, .packages = NULL, .export = NULL, ...)

Arguments

fname a function implementing a user-defined clustering method. It clusters a data set
and outputs cluster parameters. fname must fulfill certain requirements detailed
below in the Details.

.packages character vector of packages that the tasks in fname depend on (see Details).

.export character vector of variables to export that are needed by fname and that are not
defined in the current environment (see Details).

... parameters passed to fname. If a given parameter is included as a vector/list
each of its members is to obtain the final collection of fname specifications (see
Details and Examples).

Details

The function produces functions implementing competing clustering methods based on a prototype
methodology implemented by the user via the input argument fname. In particular, it builds a list of
fname-type functions each corresponding to a specific setup in terms of hyper-parameters (e.g. the
number of clusters) and algorithm’s control parameters (e.g. initialization).

Requirements for fname. fname is a function implementing the base clustering method of interest.
It must have the following input argument
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• data: a numeric vector, matrix, or data frame of observations. Rows correspond to observa-
tions and columns correspond to variables/features. Categorical variables and NA values are
not allowed.

Additionally, fname can have any other input parameter controlling the underlying clustering model/method/algorithm.
All this additional parameters are passed to mset_user via ... (see Arguments).

The output of fname must contain a list named params with cluster parameters describing size,
centrality and scatter. Let P=number of variable/features and K=number of clusters. The elements
of params are as follows:

• prop: a vector of clusters’ proportions;

• mean: a matrix of dimension (P x K) containing the clusters’ mean parameters;

• cov: an array of size (P x P x K) containing the clusters’ covariance matrices.

Note that params can be easily obtained from a vector of cluster labels using clust2params.

packages and export. The user does not normally need to specify packages and export. These
arguments are not needed if the functions generated by mset_user will be called from an environ-
ment containing all variables and functions needed to execute fname. Functions like bqs will call
the functions by mset_user within a parallel infrastructure using foreach. If the user specifies
packages and export, they will be passed to the .packages and .export arguments of foreach.

Finally, note that the package already contains specialized versions of mset_user generating meth-
ods settings for some popular algorithms (see mset_gmix, mset_kmeans, mset_pam)

Value

An S3 object of class 'qcmethod'. Each element of the list represents a competing method con-
taining the following objects

fullname a string identifying the setup.

callargs a list with arguments that are passed to the base function.

fn the function implementing the specified setting. This fn function can be exe-
cuted on the data set. It has two arguments: data and only_params. data is a
data matrix or data.frame only_params is logical. If only_params==FALSE (de-
fault), fn will return the object returned by the fname. If only_params==TRUE
(default) fn will return only cluster parameters (proportions, mean, and cov, see
clust2params).

References

Coraggio, Luca, and Pietro Coretto (2023). Selecting the Number of Clusters, Clustering Models,
and Algorithms. A Unifying Approach Based on the Quadratic Discriminant Score. Journal of
Multivariate Analysis, Vol. 196(105181), pp. 1-20, doi:10.1016/j.jmva.2023.105181

See Also

clust2params, mset_gmix, mset_kmeans, mset_pam

https://doi.org/10.1016/j.jmva.2023.105181
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Examples

# load data
data("banknote")
dat <- banknote[-1]

# EXAMPLE 1: generate Hierarchical Clustering settings
# ----------------------------------------------------

# wrapper for the popular stats::hclust() for Hierarchical Clustering
# Note the usee:
# of the optional arguments '...' passed to the underling clustering function
# the use of 'clust2params' to add cluster parameters to the output
hc_wrapper <- function(data, K, ...){

dm <- dist(data, method = "euclidean")
## ... = hc parameters
hc <- hclust(dm, ...)
cl <- cutree(hc, k = K)
## output with params
res <- list()
res$cluster <- cl
res$params <- clust2params(data, cluster = cl)
return(res)

}

# generate settings for Hierarchical Clustering with varying
# number of clusters K={3,4}, agglomeration method = {ward.D, median}
# see help('stats::hclust')
A <- mset_user(fname="hc_wrapper", K = c(2,3), method = c("ward.D", "complete"))

# get the setting with K=2 and method = "complete"
ma <- A[[4]]
ma

# cluster data with M[[3]]
fit_a1 <- ma$fn(dat)
fit_a1

## if only cluster parameters are needed
fit_a2 <- ma$fn(dat, only_params = TRUE)
fit_a2

## Not run:
# EXAMPLE 2: generate 'mclust' model settings
# -------------------------------------------
# mclust is popular package for performing model based clustering based on
# Gaussian mixture. Please visit
# https://cran.r-project.org/web/packages/mclust/vignettes/mclust.html
require(mclust)
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# wrapper for the popular stats::hclust() for Hierarchical Clustering
# Notes:
# * optional arguments '...' are passed to the underling
# 'mclust' clustering function
# * 'mclust' fits Gaussian Mixture models so cluster parameters are
# contained in the mclust object
mc_wrapper <- function(data, K, ...){

y <- Mclust(data, G = K, ...)
y[["params"]] <- list(proportion = y$parameters$pro,

mean = y$parameters$mean,
cov = y$parameters$variance$sigma)

return(y)
}

# generate 'mclust' model settings by varying the number of clusters and
# covariance matrix models (see help('mclust::mclustModelNames'))
B <- mset_user(fname = "mc_wrapper", K = c(2,3), modelNames = c("EEI", "VVV"))

# get the setting with K=3 and covariance model "EEI"
mb <- B[[2]]
mb

# cluster data with M[[3]]
fit_b <- mb$fn(dat)
fit_b ## class(fit_b) = "Mclust"

# if needed one can make sure that 'mclust' package is always available
# by setting the argument 'packages'
B <- mset_user(fname = "mc_wrapper", K = c(2,3), modelNames = c("EEI","VVV"),

packages=c("mclust"))

## End(Not run)

## Not run:
# EXAMPLE 3: generate 'dbscan' settings
# -------------------------------------
# DBSCAN is popular nonparametric method for discovering clusters of
# arbitrary shapes with noise. The number of clusters is implicitly
# determined via two crucial tunings usually called 'eps' and 'minPts'
# See https://en.wikipedia.org/wiki/DBSCAN
require(dbscan)

# wrapper for dbscan::dbscan
db_wrap <- function(data, ...) {

cl <- dbscan(data, borderPoints = TRUE, ...)$cluster
return(params = clust2params(data, cl))

}

D <- mset_user(fname = "db_wrap", eps = c(0.5, 1), minPts=c(5,10))
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md <- D[[2]]
fit_d <- md$fn(dat)
fit_d
class(fit_d)

## End(Not run)

plot.bqs Plot (Bootstrap) Quadratic Score Results

Description

Produce a plot of bqs (Bootstrap Quadratic Scores). This function creates plots based on the BQS
(Bootstrap Quality Scores) data.

Usage

## S3 method for class 'bqs'
plot(x, score = NULL, perc_scale = FALSE, top = NULL, annotate = NULL, ...)

Arguments

x An S3 object of class bqs as returned by the bqs function. x is expected to have
the component rankby set.

score Character vector specifying the score(s) to be plotted. Valid scores are "hard",
"smooth", "oob_hard", and "oob_smooth". If NULL (default), all valid scores
present in x are plotted.

perc_scale Logical; if TRUE, scales the plot using percentages, relative to the best score.
Default is FALSE.

top Numeric; specifies the number of top models to individually highlight. Must
be a single number less than or equal to the length of x$methodset. If NULL
(default), top is automatically determined based on the score values.

annotate Logical; if TRUE, annotates the top models in the plot. Default is automatically
determined (TRUE if the number of methods M <= 30, FALSE otherwise).

... Further arguments passed to or from other methods.

Value

A plot displaying the Bootstrap Quality Scores.

See Also

bqs
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Examples

# load data
data("banknote")
dat <- banknote[-1]

# set up methods
mlist <- mset_gmix(K=1:3, erc=c(1,100))

# perform bootstrap
# change B and ncores to a much larger value in real problems
res <- bqs(dat, mlist, B = 3, type = "both", rankby="lq",

ncores = 1, oob = TRUE, savescores = FALSE, saveparams = FALSE)

# Plot with default settings
plot(res)

# Plot in percentage scale relative to first model
plot(res, perc_scale = TRUE)

plot.mbcfit Plot Fitted Mixture Models

Description

This function provides a plot method for objects of class mbcfit, returned as output by the gmix
function. It serves as a wrapper around plot_clustering, allowing easy visualization of clustering
results, including clustering assignments, contours, and boundaries.

Usage

## S3 method for class 'mbcfit'
plot(x, data = NULL, subset = NULL,

what = c("clustering", "contour"),
col_cl = NULL, pch_cl = NULL, ...)

Arguments

x An object of class mbcfit, typically a result of the gmix function.

data NULL or a data matrix, data frame, or array containing data points to be plotted.
See Details.

subset A numeric vector indexing columns of data to subset and focus the plot on
specific features. Default is NULL.

what Character vector specifying which elements to plot. Options are "clustering",
"contour", and "boundary". Default is to plot "clustering" and "boundary".
See Details.
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col_cl A vector of colors to use for clusters (one for each cluster). Default is NULL,
which uses a default sequence of colors.

pch_cl A vector of plotting symbols (one for each cluster) to use for clusters. Default
is NULL, which uses a default sequence of symbols.

... Further arguments passed to or from other methods.

Details

The plot.mbcfit function provides a plotting method for objects of the class mbcfit. It acts as
a wrapper around the plot_clustering function, allowing users to easily generate various plots
to analyze the clustering results. A plot is produced only upon a successful mbcfit estimate, i.e.,
when mbcfit has code equal to either 1 or 2.

When data is NULL (the default), the function plots only contour sets (and optionally clustering
boundaries) for the estimated mixture density components, using the params information from the
mbcfit object. When data is not NULL, the function additionally plots data points and their hard
clustering labels, which are obtained using mbcfit to predict the cluster labels (see predict.mbcfit).

Value

A plot displaying the data with clustering information, contours, and/or boundaries, depending on
the specified what argument.

See Also

gmix, plot_clustering, link{predict.mbcfit}

Examples

# load data
data("banknote")
dat <- banknote[-1]

# fit 2 clusters
set.seed(123)
fit <- gmix(dat, K = 2, init.nstart = 1)
print(fit)

# plot partition (default)
plot(x = fit, data = dat)

# plot partition onto the first 3 coordinates
plot(x = fit, data = dat, subset = c(1:3), pch_cl = c("A", "B"),

col_cl = c("#4285F4", "#0F9D58"), what = "clustering")

# additionally plot clustering boundary and contour sets
plot(x = fit, data = dat, subset = c(1:3), pch_cl = c("A", "B"),

col_cl = c("#4285F4", "#0F9D58"), what = c("clustering", "boundary", "contour"))
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plot_clustering Plot Data With Clustering Information

Description

This function plots data and optionally adds clustering information such as clustering assignments,
contours, or boundaries.

Usage

plot_clustering(data, subset = NULL,
cluster = NULL, params = NULL,
what = c("clustering", "contour", "boundary"),
col_cl = NULL, pch_cl = NULL)

Arguments

data a numeric vector, matrix, or data frame of observations. Rows correspond to ob-
servations and columns correspond to variables/features. Categorical variables
and NA values are not allowed.

subset A numeric vector indexing columns of data to subset and focus the plot on
specific features. Default is NULL.

cluster A vector of cluster assignments. If provided, the plot can display clustering
information as specified in what. Must have the same number of observations
as data

params A list of clustering parameters, including proportion, mean, and cov. If pro-
vided, the plot can display contour and boundary information.

what Character vector specifying which elements to plot. Options are "clustering",
"contour", and "boundary". Default is to plot "clustering" whenever cluster
is not NULL, and "contour" and "boundary" whenever params is not NULL.

col_cl A vector of colors to use for clusters (one for each cluster). Default is NULL,
which uses a default sequence of colors.

pch_cl A vector of plotting symbols (one for each cluster) to use for clusters. Default
is NULL, which uses a default sequence of symbols.

Value

No return value, called for side effects

See Also

bqs, clust2params
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Examples

# Example data
set.seed(123)
data <- rbind(

matrix(rnorm(100 * 2), ncol = 2),
matrix(rnorm(100 * 2) + 2, ncol = 2)

)
cluster <- c(rep(1, 100), rep(2, 100))
params <- clust2params(data, cluster)

# Plot with clustering information
plot_clustering(data, cluster = cluster, what = "clustering")

# Plot with subset of variables
plot_clustering(data, cluster = cluster, subset = 1, what = c("clustering", "contour"))

# Plot with customized colors and symbols
plot_clustering(data, cluster = cluster, params = params,

col_cl = c("magenta", "orange"), pch_cl = c("A", "B"))

predict.mbcfit Predict Hard Clustering Assignments for using Mixture Models

Description

This function predicts cluster assignments for new data based on an existing model of class mbcfit.
The prediction leverages information from the fitted model to categorize new observations into
clusters.

Usage

## S3 method for class 'mbcfit'
predict(object, newdata, ...)

Arguments

object An object of class mbcfit, representing the fitted mixture model. This is typi-
cally obtained in output from the gmix function. See Details.

newdata A numeric vector, matrix, or data frame of observations. Rows correspond to ob-
servations and columns correspond to variables/features. Categorical variables
and NA values are not allowed. The number of columns must be coherent with
that implied by x. See Details.

... Further arguments passed to or from other methods.



predict.mbcfit 31

Details

The predict.mbcfit function utilizes the parameters of a previously fitted mbcfit model to allo-
cate new data points to estimated clusters. The function performs necessary checks to ensure the
mbcfit model returns valid estimates and the dimensionality of the new data aligns with the model.

The mbcfit object must contain a component named params, which is itself a list containing the
following necessary elements, for a mixture model with K components:

proportions A numeric vector of length K, with elements summing to 1, representing cluster
proportions.

mean A numeric matrix of dimensions c(P, K), representing cluster centers.

cov A numeric array of dimensions c(P, P, K), representing cluster covariance matrices.

Data dimensionality is P, and new data dimensionality must match (ncol(data) must be equal to
P) or otherwise the function terminates with an error message.

The predicted clustering is obtained as the MAP estimator using posterior weights of a Gaussian
mixture model parametrized at params. Denoting with z(x) the predicted cluster label for point x,
and with ϕ the (multivariate) Gaussian density:

z(x) = arg max
k={1,...,K}

πkϕ(x, µk,Σk)∑K
j=1 πjϕ(x, µj ,Σj)

Value

A vector of length nrow(data) containing the estimated cluster labels for each observation in the
provided data.

References

Coraggio, Luca and Pietro Coretto (2023). Selecting the number of clusters, clustering models, and
algorithms. A unifying approach based on the quadratic discriminant score. Journal of Multivariate
Analysis, Vol. 196(105181), 1-20. doi: doi:10.1016/j.jmva.2023.105181

See Also

gmix

Examples

# load data
data(banknote)
dat <- banknote[,-1]

# Estimate 3-components gaussian mixture model
set.seed(123)
res <- gmix(dat, K = 3)

# Cluster in output from gmix
print(res$cluster)

https://doi.org/10.1016/j.jmva.2023.105181
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# Predict cluster on a single point
# (keep table dimension)
predict(res, dat[1, , drop=FALSE])

# Predict cluster on a subset
predict(res, dat[1:10, ])

# Predicted cluster on original dataset are equal to the clustering from the gmix model
all(predict(res, dat) == res$cluster)

print.bqs Display Information on Bootstrap Quadratic Scores Objects

Description

This function provides a print method for objects of class bqs, which are produced by the bqs
function. It prints a summary of the bootstrapped quadratic score results for the clustering solutions
considered.

Usage

## S3 method for class 'bqs'
print(x, ...)

Arguments

x An object of class bqs, usually the output of the bqs function.

... Additional arguments passed to or from other methods.

Details

The print.bqs function provides a print method for objects of class bqs.

If clustering solutions in bqs are not ranked, the printing method displays a message to the user
signalling it. Otherwise, the printing method shows a summary of the top-6 ranked solutions, in
decreasing order, for any available scoring method (this is determined by the oob argument used in
input to the bqs function. See Details in bqs).

The summary tables for ranked methods has row.names set to the method’s codename, and shows
the following information along the columns:

id Method’s index in the methodset list (see Details in bqs).

rank Method’s rank according to ranking criterion.

mean Method’s mean (bootstrap) quadratic score.

sterr Method’s standard error for the (bootstrap) quadratic score.

lower_qnt (Only shown for "mean" and "lq" ranking) Method’s lower alpha/2-level quantile of
the bootstrap distribution of the quadratic score (alpha is given in input to bqs function).
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upper_qnt (Only shown for "mean" and "lq" ranking) Method’s upper alpha/2-level quantile of
the bootstrap distribution of the quadratic score (alpha is given in input to bqs function).

-1se (Only shown for "1se" ranking) Method’s mean (bootstrap) quadratic score minus 1 standard
error.

-1se (Only shown for "1se" ranking) Method’s mean (bootstrap) quadratic score plus 1 standard
error.

Value

No return value, called for side effects

See Also

bqs, bqs_rank

Examples

# Load data and set seet
set.seed(123)
data("banknote")
dat <- banknote[-1]

# set up kmeans, see help('mset_kmeans')
KM <- mset_kmeans(K = 2:5)

# set up Gaussian model-based clustering via gmix()
GMIX <- mset_gmix(K=2:5, erc=c(1, 50 , 100))

# combine tuned methods
mlist <- mbind(KM, GMIX)

# perform bootstrap
# se 'ncores' to the number of available physical cores
res <- bqs(dat, mlist, B = 100, type = "both", rankby=NA, ncores = 1,

oob = TRUE, savescores = TRUE, saveparams = FALSE)

# Methods are not ranked; only available components are shown
res

# Rank method and show summaries
ranked_res <- bqs_rank(res, rankby = "lq", boot_na_share = 0.25)

ranked_res
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print.mbcfit Display Information for Mixture Model Objects

Description

This function provides a print method for objects of class mbcfit, returned in output by the gmix
function.

Usage

## S3 method for class 'mbcfit'
print(x, ...)

Arguments

x An object of class mbcfit, typically a result of the gmix function.

... Further arguments passed to or from other methods.

Details

The print.mbcfit function gives a summary of a model-based clustering fit, estimated using the
gmix function.

The function handles different code values from the object’s info field, each representing a specific
status or error condition:

-2 ’Lapack DSYEV failed’. This error occurs whenever any of the cluster-covariance matrices
becomes singular during estimation, using the EM algorithm.

-1 ’Memory allocation error’. This error occurs when there is insufficient available memory to
allocate the quantities required to execute the EM algorithm.

1 Success.

2 ’gmix’ did not converge (iterations reached the maximum limit).

3 EM algorithm failed; no better than the initial solution. This error occurs whenever the EM
algorithm failed for other reasons (e.g., degenerate posterior-weights could not be prevented),
and it was not possible to find a solution.

The printed output also lists available components of the mbcfit object and summarizes the number
of clusters found and their size, whenever this information is available.

Value

No return value, called for side effects

See Also

gmix
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Examples

set.seed(123)

# Estimate a simple a 3-clusters Gaussian mixture model, using iris data as example
res <- gmix(iris[,-5], K = 3, erc = 10)

# Print the 'gmix' output
print(res)

qscore Clustering Quadratic Score

Description

Computes both the hard and the smooth quadratic score of a clustering. Handles both

Usage

qscore(data, params, type = "both")

Arguments

data a numeric vector, matrix, or data frame of observations. Rows correspond to
observations and columns correspond to variables/features. Let N=nrows(data)
and P=ncol(data). Categorical variables and NA values are not allowed.

params a list containing cluster parameters (size, mean, cov). Let K=number of clusters.
The elements of the list are as follows: $prop=vector of clusters’ proportions;
$mean=matrix of dimension (P x K) containing the clusters’ mean parameters;
$cov=array of size (P x P x K) containing the clusters’ covariance matrices.

type the type of score, a character in the set c("both", "smooth", "hard"). The
default value is set to "booth". See Details.

Details

The function calculates quadratic scores as defined in equation (22) in Coraggio and Coretto (2023).

Value

A numeric vector with both the hard and the smooth score, or only one of them depending on the
argument type.

References

Coraggio, Luca and Pietro Coretto (2023). Selecting the number of clusters, clustering models, and
algorithms. A unifying approach based on the quadratic discriminant score. Journal of Multivariate
Analysis, Vol. 196(105181), 1-20. DOI: doi:10.1016/j.jmva.2023.105181

https://doi.org/10.1016/j.jmva.2023.105181
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See Also

clust2params

Examples

# --- load and split data
data("banknote")
set.seed(345)
idx <- sample(1:nrow(banknote), size = 25, replace = FALSE)
dat_f <- banknote[-idx, -1] ## training data set
dat_v <- banknote[ idx, -1] ## validation data set

# --- Gaussian model-based clustering, K=3
# fit clusters
fit1 <- gmix(dat_f, K=3)
## compute quadratic scores using fitted mixture parameters
s1 <- qscore(dat_v , params = fit1$params)
s1

# --- k-means clustering, K=3
# obtain the k-means partition
cl_km <- kmeans(dat_f, centers = 3, nstart = 1)$cluster
## convert k-means hard assignment into cluster parameters
par_km <- clust2params(dat_f, cl_km)
# compute quadratic scores
s2 <- qscore(dat_v, params = par_km)
s2
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