Package: TransTGGM 1.0.0

Mingyang Ren

TransTGGM: Transfer Learning for Tensor Graphical Models

Tensor Gaussian graphical models (GGMs) have important applications in numerous areas, which can interpret conditional independence structures within tensor data. Yet, the available tensor data in one single study is often limited due to high acquisition costs. Although relevant studies can provide additional data, it remains an open question how to pool such heterogeneous data. This package implements a transfer learning framework for tensor GGMs, which takes full advantage of informative auxiliary domains even when non-informative auxiliary domains are present, benefiting from the carefully designed data-adaptive weights. Reference: Ren, M., Zhen Y., and Wang J. (2022). "Transfer learning for tensor graphical models" <arxiv:2211.09391>.

Authors:Mingyang Ren [aut, cre], Yaoming Zhen [aut], Junhui Wang [aut]

TransTGGM_1.0.0.tar.gz
TransTGGM_1.0.0.tar.gz(r-4.5-noble)TransTGGM_1.0.0.tar.gz(r-4.4-noble)
TransTGGM_1.0.0.tgz(r-4.4-emscripten)TransTGGM_1.0.0.tgz(r-4.3-emscripten)
TransTGGM.pdf |TransTGGM.html
TransTGGM/json (API)

# Install 'TransTGGM' in R:
install.packages('TransTGGM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 5 scripts 166 downloads 3 exports 23 dependencies

Last updated 2 years agofrom:19e4ac8aac. Checks:OK: 1 NOTE: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-linuxNOTENov 06 2024

Exports:tensor.GGM.transTheta.estTheta.tuning

Dependencies:clicodetoolscpp11doParallelexpmforeachglassogluehugeigraphiteratorslatticelifecyclemagrittrMASSMatrixpkgconfigRcppRcppEigenrlangrTensorTlassovctrs

TransTGGM

Rendered fromTransTGGM.Rmdusingknitr::rmarkdownon Nov 06 2024.

Last update: 2022-11-23
Started: 2022-11-23