Package: pcdpca 0.4

Lukasz Kidzinski

pcdpca: Dynamic Principal Components for Periodically Correlated Functional Time Series

Method extends multivariate and functional dynamic principal components to periodically correlated multivariate time series. This package allows you to compute true dynamic principal components in the presence of periodicity. We follow implementation guidelines as described in Kidzinski, Kokoszka and Jouzdani (2017), in Principal component analysis of periodically correlated functional time series <arxiv:1612.00040>.

Authors:Lukasz Kidzinski [aut, cre], Neda Jouzdani [aut], Piotr Kokoszka [aut]

pcdpca_0.4.tar.gz
pcdpca_0.4.tar.gz(r-4.5-noble)pcdpca_0.4.tar.gz(r-4.4-noble)
pcdpca_0.4.tgz(r-4.4-emscripten)pcdpca_0.4.tgz(r-4.3-emscripten)
pcdpca.pdf |pcdpca.html
pcdpca/json (API)

# Install 'pcdpca' in R:
install.packages('pcdpca', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.70 score 8 scripts 188 downloads 3 exports 50 dependencies

Last updated 7 years agofrom:994e422255. Checks:OK: 1 NOTE: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 17 2024
R-4.5-linuxNOTENov 17 2024

Exports:pcdpcapcdpca.inversepcdpca.scores

Dependencies:ashbitopscliclustercolorspacedeSolvefansifarverfdafdsFNNfreqdomggplot2gluegtablehdrcdeisobandkernlabKernSmoothkslabelinglatticelifecyclelocfitmagrittrMASSMatrixmatrixcalcmclustmgcvmulticoolmunsellmvtnormnlmepcaPPpillarpkgconfigpracmaR6rainbowRColorBrewerRcppRCurlrlangscalestibbleutf8vctrsviridisLitewithr