Package: hdsvm 1.0.1

Yikai Zhang
hdsvm: Fast Algorithm for Support Vector Machine
Implements an efficient algorithm to fit and tune penalized Support Vector Machine models using the generalized coordinate descent algorithm. Designed to handle high-dimensional datasets effectively, with emphasis on precision and computational efficiency. This package implements the algorithms proposed in Tang, Q., Zhang, Y., & Wang, B. (2022) <https://openreview.net/pdf?id=RvwMTDYTOb>.
Authors:
hdsvm_1.0.1.tar.gz
hdsvm_1.0.1.tar.gz(r-4.5-noble)hdsvm_1.0.1.tar.gz(r-4.4-noble)
hdsvm_1.0.1.tgz(r-4.4-emscripten)hdsvm_1.0.1.tgz(r-4.3-emscripten)
hdsvm.pdf |hdsvm.html✨
hdsvm/json (API)
# Install 'hdsvm' in R: |
install.packages('hdsvm', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 months agofrom:ea84c168a5. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 13 2025 |
R-4.5-linux-x86_64 | OK | Mar 13 2025 |
R-4.4-linux-x86_64 | OK | Mar 13 2025 |
Exports:cv.hdsvmcv.nc.hdsvmhdsvmnc.hdsvm
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Extract Coefficients from a `cv.hdsvm` Object | coef.cv.hdsvm |
Extract Coefficients from a `cv.nc.hdsvm` Object | coef.cv.nc.hdsvm |
Extract Model Coefficients from a `hdsvm` Object | coef.hdsvm |
Extract Model Coefficients from a `nc.hdsvm` Object | coef.nc.hdsvm |
Cross-validation for Selecting the Tuning Parameter in the Penalized SVM | cv.hdsvm |
Cross-validation for Selecting the Tuning Parameter of Nonconvex Penalized SVM | cv.nc.hdsvm |
Solve Penalized SVM | hdsvm |
Solve the Penalized SVM with Nonconvex Penalties | nc.hdsvm |
Make Predictions from a `cv.hdsvm` Object | predict.cv.hdsvm |
Make Predictions from a `cv.nc.hdsvm` Object | predict.cv.nc.hdsvm |
Make Predictions from a `hdsvm` Object | predict.hdsvm |
Make Predictions from a `nc.hdsvm` Object | predict.nc.hdsvm |