Package: elrm 1.2.5

David Zamar

elrm: Exact Logistic Regression via MCMC

Implements a Markov Chain Monte Carlo algorithm to approximate exact conditional inference for logistic regression models. Exact conditional inference is based on the distribution of the sufficient statistics for the parameters of interest given the sufficient statistics for the remaining nuisance parameters. Using model formula notation, users specify a logistic model and model terms of interest for exact inference. See Zamar et al. (2007) <doi:10.18637/jss.v021.i03> for more details.

Authors:David Zamar [aut, cre], Jinko Graham [aut], Brad McNeney [aut]

elrm_1.2.5.tar.gz
elrm_1.2.5.tar.gz(r-4.5-noble)elrm_1.2.5.tar.gz(r-4.4-noble)
elrm_1.2.5.tgz(r-4.4-emscripten)elrm_1.2.5.tgz(r-4.3-emscripten)
elrm.pdf |elrm.html
elrm/json (API)

# Install 'elrm' in R:
install.packages('elrm', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • crashDat - Crash Dataset: Calibration of Crash Dummies in Automobile Safety Tests
  • diabDat - Simulated Diabetes Dataset
  • drugDat - Drug Dataset
  • titanDat - Titanic Dataset
  • utiDat - Urinary Tract Infection and Contraceptive Use

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.56 score 1 packages 12 scripts 171 downloads 1 mentions 4 exports 2 dependencies

Last updated 3 years agofrom:ebfea7e5f2. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-linux-x86_64OKNov 23 2024

Exports:elrmplot.elrmsummary.elrmupdate.elrm

Dependencies:codalattice

elrm

Rendered fromelrm.Rnwusingutils::Sweaveon Nov 23 2024.

Last update: 2019-06-28
Started: 2013-12-05