Package: compound.Cox 3.32

Takeshi Emura
compound.Cox: Univariate Feature Selection and Compound Covariate for Predicting Survival, Including Copula-Based Analyses for Dependent Censoring
Univariate feature selection and compound covariate methods under the Cox model with high-dimensional features (e.g., gene expressions). Available are survival data for non-small-cell lung cancer patients with gene expressions (Chen et al 2007 New Engl J Med) <doi:10.1056/NEJMoa060096>, statistical methods in Emura et al (2012 PLoS ONE) <doi:10.1371/journal.pone.0047627>, Emura & Chen (2016 Stat Methods Med Res) <doi:10.1177/0962280214533378>, and Emura et al (2019)<doi:10.1016/j.cmpb.2018.10.020>. Algorithms for generating correlated gene expressions are also available. Estimation of survival functions via copula-graphic (CG) estimators is also implemented, which is useful for sensitivity analyses under dependent censoring (Yeh et al 2023 Biomedicines) <doi:10.3390/biomedicines11030797> and factorial survival analyses (Emura et al 2024 Stat Methods Med Res) <doi:10.1177/09622802231215805>.
Authors:
compound.Cox_3.32.tar.gz
compound.Cox_3.32.tar.gz(r-4.5-noble)compound.Cox_3.32.tar.gz(r-4.4-noble)
compound.Cox_3.32.tgz(r-4.4-emscripten)compound.Cox_3.32.tgz(r-4.3-emscripten)
compound.Cox.pdf |compound.Cox.html✨
compound.Cox/json (API)
# Install 'compound.Cox' in R: |
install.packages('compound.Cox', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 27 days agofrom:e00282a7a4. Checks:2 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 11 2025 |
R-4.5-linux | OK | Jan 11 2025 |
Exports:CG.ClaytonCG.FrankCG.GumbelCG.testcindex.CVcompound.regdependCox.regdependCox.reg.CVsurv.factorialuni.scoreuni.selectionuni.WaldX.pathwayX.tag