Package: IDmeasurer 1.0.0

Pavel Linhart

IDmeasurer: Assessment of Individual Identity in Animal Signals

Provides tools for assessment and quantification of individual identity information in animal signals. This package accompanies a research article by Linhart et al. (2019) <doi:10.1101/546143>: "Measuring individual identity information in animal signals: Overview and performance of available identity metrics".

Authors:Pavel Linhart [aut, cre]

IDmeasurer_1.0.0.tar.gz
IDmeasurer_1.0.0.tar.gz(r-4.5-noble)IDmeasurer_1.0.0.tar.gz(r-4.4-noble)
IDmeasurer_1.0.0.tgz(r-4.4-emscripten)IDmeasurer_1.0.0.tgz(r-4.3-emscripten)
IDmeasurer.pdf |IDmeasurer.html
IDmeasurer/json (API)
NEWS

# Install 'IDmeasurer' in R:
install.packages('IDmeasurer', repos = 'https://cloud.r-project.org')
Datasets:
  • ANmodulation - Little owl, _Athene noctua_ - frequency modulation
  • ANspec - Little owl, _Athene noctua_ - spectrum properties
  • CCformants - Corncrake, _Crex crex_ - formants
  • CCspec - Corncrake, _Crex crex_ - spectrum properties
  • LAhighweewoo - Yellow-breasted boubou, _Laniarius atroflavus_ - spectrum properties
  • SSgrunts - Domestic pig, _Sus scrofa domestica_ - piglet grunts

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.70 score 130 downloads 20 exports 14 dependencies

Last updated 6 years agofrom:c89c6d520a. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 20 2025
R-4.5-linuxOKMar 20 2025
R-4.4-linuxOKMar 20 2025

Exports:calcDistTcalcDistWcalcDScalcFcalcHMcalcHScalcHSngroupscalcHSnpergroupcalcHSntotcalcHSvarcompcalcMeanVeccalcMIcalcPCAcalcPICcalcPICbetweenmeanscalcPICbetweentotconvertDStoHSconvertHStoDSGenerateMultivariateGenerateUnivariate

Dependencies:bootinfotheolatticelme4MASSMatrixminqanlmenloptrrbibutilsRcppRcppEigenRdpackreformulas

IDmeasurer workflow examples

Rendered fromidmeasurer-workflow-examples.Rmdusingknitr::rmarkdownon Mar 20 2025.

Last update: 2019-05-09
Started: 2019-05-09

Citation

To cite IDmeasurer in publications use:

Linhart P, Osiejuk T, Budka M, Salek M, Spinka M, Policht R, Syrova M, Blumstein DT. 2019. Measuring individual identity information in animal signals: Overview and performance of available identity metrics. BioRxiv, 546143,<doi:10.1101/546143>.

Corresponding BibTeX entry:

  @Article{,
    title = {Measuring individual identity information in animal
      signals: Overview and performance of available identity metrics},
    author = {Pavel Linhart and Tomasz Osiejuk and Michal Budka and
      Martin Salek and Marek Spinka and Richard Policht and Michaela
      Syrova and Daniel T. Blumstein},
    journal = {BioRxive},
    year = {2019},
    pages = {546143},
    doi = {10.1101/546143},
    url = {https://www.biorxiv.org/content/10.1101/546143v1},
  }

Readme and manuals

IDmeasurer

The goal of IDmeasurer package is to provide tools for assessment and quantification of individual identity information in animal signals. This package accompanies a research article by Linhart et al.: ‘Measuring individual identity information in animal signals: Overview and performance of available identity metrics’, which can currently be accessed at BioRxive.

Installation

The package is currently available at GitHub:

devtools::install_github('pygmy83/IDmeasurer', build = TRUE, build_opts = c("--no-resave-data", "--no-manual"))

The package has been also submitted to CRAN and it should be soon possible to install the released version of IDmeasurer from CRAN with:

install.packages("IDmeasurer")

Example

This is a basic example which shows how to calculate individual identity information in territorial calls of little owls (ANspec example data):

library(IDmeasurer)

Input data for the calculation of identity metrics in this package, in general, is a data frame with the first column containing individual identity codes (factor) and the other columns containing individuality traits (numeric).

summary(ANspec)   
#>        id           dur               df              minf       
#>  007a   : 10   Min.   :0.3680   Min.   : 547.2   Min.   : 476.6  
#>  042a   : 10   1st Qu.:0.5040   1st Qu.: 955.7   1st Qu.: 742.2  
#>  045a   : 10   Median :0.5680   Median :1014.0   Median : 820.3  
#>  055a   : 10   Mean   :0.5733   Mean   :1033.0   Mean   : 798.7  
#>  062a   : 10   3rd Qu.:0.6320   3rd Qu.:1073.6   3rd Qu.: 890.6  
#>  070p   : 10   Max.   :0.9760   Max.   :1781.4   Max.   :1101.6  
#>  (Other):270                                                     
#>       maxf             q25              q50              q75        
#>  Min.   : 929.7   Min.   : 570.3   Min.   : 875.0   Min.   : 898.4  
#>  1st Qu.:1234.4   1st Qu.: 906.3   1st Qu.: 992.2   1st Qu.:1109.4  
#>  Median :1839.8   Median : 953.1   Median :1039.1   Median :1203.1  
#>  Mean   :1609.0   Mean   : 959.0   Mean   :1049.6   Mean   :1291.4  
#>  3rd Qu.:1882.8   3rd Qu.:1007.8   3rd Qu.:1084.0   3rd Qu.:1523.4  
#>  Max.   :1937.5   Max.   :1203.1   Max.   :1398.4   Max.   :1750.0  
#> 

This calculates HS metric for every single trait variable in the dataset.

calcHS(ANspec, sumHS=F)
#>   vars Pr   HS
#> 2  dur  0 1.13
#> 3   df  0 0.58
#> 4 minf  0 0.80
#> 5 maxf  0 1.06
#> 6  q25  0 1.04
#> 7  q50  0 1.48
#> 8  q75  0 0.93

To calculate the HS for an entire signal, it is neccessary to have uncorrelated variables in dataset. Raw (correlated) trait variables need to be transformed into principal components by the Principal component analysis.

temp <- calcPCA(ANspec) 

Calculate HS for an entire signal.

calcHS(temp) 
#> HS for significant vars         HS for all vars 
#>                    4.68                    4.68

To see description of the example dataset, use:

?ANspec

More examples can be found in IDmeasurer vignette:

vignette('idmeasurer-workflow-examples')

Help Manual

Help pageTopics
Little owl, _Athene noctua_ - frequency modulationANmodulation
Little owl, _Athene noctua_ - spectrum propertiesANspec
Calculate total distance in given datasetcalcDistT
Calculate average within individual distancecalcDistW
Calculates discrimination score (DS)calcDS
Calculate F-values for individual identity traitscalcF
Calculate information capacity (HM)calcHM
Calculate Beecher's information statistic (HS, variant = HSnpergroup)calcHS
Calculate Beecher's information statistic (HS, variant = HSngroups)calcHSngroups
Calculate Beecher's information statistic (HS, variant = HSnpergroup)calcHSnpergroup
Calculate Beecher's information statistic (HS, variant = HSntot)calcHSntot
Calculate Beecher's information statistic (HS, variant = HSvarcomp)calcHSvarcomp
Calculate the centroid of the individual identity traitscalcMeanVec
Calculate Mutual information (MI)calcMI
Convert raw trait variables into principal componentscalcPCA
Calculates potential of identity coding (PIC, variant=PICbetweentot)calcPIC
Calculates potential of identity coding (PIC, variant=PICbetweenmeans)calcPICbetweenmeans
Calculates potential of identity coding (PIC, variant=PICbetweentot)calcPICbetweentot
Corncrake, _Crex crex_ - formantsCCformants
Corncrake, _Crex crex_ - spectrum propertiesCCspec
Convert DS to HSconvertDStoHS
Convert HS to DSconvertHStoDS
Generate dataset with multiple individual identity traitsGenerateMultivariate
Generate dataset with a single individual identity traitGenerateUnivariate
IDmeasurer: A package for calculation of individual identity metrics in animal signals.IDmeasurer-package IDmeasurer
Yellow-breasted boubou, _Laniarius atroflavus_ - spectrum propertiesLAhighweewoo
Domestic pig, _Sus scrofa domestica_ - piglet gruntsSSgrunts