Package: bayesreg 1.3
Daniel F. Schmidt
bayesreg: Bayesian Regression Models with Global-Local Shrinkage Priors
Fits linear or generalized linear regression models using Bayesian global-local shrinkage prior hierarchies as described in Polson and Scott (2010) <doi:10.1093/acprof:oso/9780199694587.003.0017>. Provides an efficient implementation of ridge, lasso, horseshoe and horseshoe+ regression with logistic, Gaussian, Laplace, Student-t, Poisson or geometric distributed targets using the algorithms summarized in Makalic and Schmidt (2016) <doi:10.48550/arXiv.1611.06649>.
Authors:
bayesreg_1.3.tar.gz
bayesreg_1.3.tar.gz(r-4.5-noble)bayesreg_1.3.tar.gz(r-4.4-noble)
bayesreg_1.3.tgz(r-4.4-emscripten)bayesreg_1.3.tgz(r-4.3-emscripten)
bayesreg.pdf |bayesreg.html✨
bayesreg/json (API)
# Install 'bayesreg' in R: |
install.packages('bayesreg', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- spambase - Spambase
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 months agofrom:cd25c7f71a. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-linux | OK | Oct 31 2024 |
Exports:bayesreg
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Getting started with the Bayesreg package | bayesreg-package |
Fitting Bayesian Regression Models with Continuous Shrinkage Priors | bayesreg |
Prediction method for Bayesian penalised regression ('bayesreg') models | predict.bayesreg |
Spambase | spambase |
Summarization method for Bayesian penalised regression ('bayesreg') models | summary.bayesreg |