
Package: bayesreg (via r-universe)
September 15, 2024

Type Package

Title Bayesian Regression Models with Global-Local Shrinkage Priors

Version 1.2

Date 2021-03-29

Maintainer Daniel F. Schmidt <daniel.schmidt@monash.edu>

Description Fits linear or generalized linear regression models using
Bayesian global-local shrinkage prior hierarchies as described
in Polson and Scott (2010)
<doi:10.1093/acprof:oso/9780199694587.003.0017>. Provides an
efficient implementation of ridge, lasso, horseshoe and
horseshoe+ regression with logistic, Gaussian, Laplace,
Student-t, Poisson or geometric distributed targets using the
algorithms summarized in Makalic and Schmidt (2016)
<arXiv:1611.06649>.

License GPL (>= 3)

Imports stats (>= 3.0), pgdraw (>= 1.0)

RoxygenNote 7.1.1

NeedsCompilation no

Author Daniel F. Schmidt [aut, cph, cre]
(<https://orcid.org/0000-0002-1788-2375>), Enes Makalic [aut,
cph] (<https://orcid.org/0000-0003-3017-0871>)

Repository CRAN

Date/Publication 2021-03-29 05:40:02 UTC

Contents
bayesreg-package . 2
bayesreg . 6
predict.bayesreg . 10
spambase . 14
summary.bayesreg . 17

Index 20

1

https://doi.org/10.1093/acprof:oso/9780199694587.003.0017
https://arxiv.org/abs/1611.06649
https://orcid.org/0000-0002-1788-2375
https://orcid.org/0000-0003-3017-0871

2 bayesreg-package

bayesreg-package Getting started with the bayesreg package

Description

This is a comprehensive, user-friendly package implementing the state-of-the-art in Bayesian linear
regression, Bayesian count regression and Bayesian logistic regression. Features of the toolbox
include:

• Supports Gaussian, Laplace, Student-t, Poisson, geometric and logistic binary data models.

• Efficient and numerically stable implementations of Bayesian ridge, Bayesian lasso, horseshoe
and horseshoe+ regression.

• Provides variable ranking and importance, credible intervals and diagnostics such as the widely
applicable information criterion.

• Factor variables are automatically grouped together and additional shrinkage is applied to the
set of indicator variables to which they expand.

• Prediction tools for generating credible intervals and Bayesian averaging of predictions.

The lasso, horseshoe and horseshoe+ priors are recommended for data sets where the number of
predictors is greater than the sample size. The Laplace, Student-t and logistic models are based on
scale-mixture representations; logistic regression utilises the Polya-gamma sampler implemented
in the pgdraw package. The Poisson and geometric distributions are implemented using a fast
gradient-assisted Metropolis-Hastings algorithm.

Details

Count (non-negative integer) regression is now supported through implementation of Poisson and
geometric regression models. To support analysis of data with outliers, we provide two heavy-
tailed error models in our implementation of Bayesian linear regression: Laplace and Student-t
distribution errors. The widely applicable information criterion (WAIC) is routinely calculated and
displayed to assist users in selecting an appropriate prior distribution for their particular problem,
i.e., choice of regularisation or data model. Most features are straightforward to use.

Further information on the particular algorithms/methods implemented in this package provided by
the literature referenced below.

Version history:

• Version 1.1: Initial release

• Version 1.2: Added Poisson and geometric regression; user specifiable credible interval levels
for summary() and predict(); summary() column "ESS" now reports effective sample size
rather than percentage-effective sample size

bayesreg-package 3

Note

To cite this package please reference:

Makalic, E. & Schmidt, D. F. High-Dimensional Bayesian Regularised Regression with the BayesReg
Package arXiv:1611.06649 [stat.CO], 2016 https://arxiv.org/pdf/1611.06649.pdf

A MATLAB-compatible implementation of this package can be obtained from:

https://au.mathworks.com/matlabcentral/fileexchange/60823-flexible-bayesian-penalized-regression-modelling

Author(s)

Daniel Schmidt <daniel.schmidt@monash.edu>

Department of Data Science and AI, Monash University, Australia

Enes Makalic <emakalic@unimelb.edu.au>

Centre for Epidemiology and Biostatistics, The University of Melbourne, Australia

References

Bhadra, A.; Datta, J.; Polson, N. G. & Willard, B. The Horseshoe+ Estimator of Ultra-Sparse
Signals Bayesian Analysis, 2016

Bhattacharya, A.; Chakraborty, A. & Mallick, B. K. Fast sampling with Gaussian scale-mixture
priors in high-dimensional regression arXiv:1506.04778, 2016

Carvalho, C. M.; Polson, N. G. & Scott, J. G. The horseshoe estimator for sparse signals Biometrika,
Vol. 97, pp. 465-480, 2010

Makalic, E. & Schmidt, D. F. A Simple Sampler for the Horseshoe Estimator IEEE Signal Process-
ing Letters, Vol. 23, pp. 179-182, 2016

Park, T. & Casella, G. The Bayesian Lasso Journal of the American Statistical Association, Vol.
103, pp. 681-686, 2008

Polson, N. G.; Scott, J. G. & Windle, J. Bayesian inference for logistic models using Polya-Gamma
latent variables Journal of the American Statistical Association, Vol. 108, pp. 1339-1349, 2013

Rue, H. Fast sampling of Gaussian Markov random fields Journal of the Royal Statistical Society
(Series B), Vol. 63, pp. 325-338, 2001

Xu, Z., Schmidt, D.F., Makalic, E., Qian, G. & Hopper, J.L. Bayesian Grouped Horseshoe Re-
gression with Application to Additive Models AI 2016: Advances in Artificial Intelligence, pp.
229-240, 2016

Schmidt, D.F. & Makalic, E. Bayesian Generalized Horseshoe Estimation of Generalized Linear
Models ECML PKDD 2019: Machine Learning and Knowledge Discovery in Databases. pp 598-
613, 2019

Stan Development Team, Stan Reference Manual (Version 2.26), Section 15.4, "Effective Sample
Size", https://mc-stan.org/docs/2_18/reference-manual/effective-sample-size-section.
html

See Also

bayesreg

https://arxiv.org/pdf/1611.06649.pdf
https://au.mathworks.com/matlabcentral/fileexchange/60823-flexible-bayesian-penalized-regression-modelling
https://mc-stan.org/docs/2_18/reference-manual/effective-sample-size-section.html
https://mc-stan.org/docs/2_18/reference-manual/effective-sample-size-section.html

4 bayesreg-package

Examples

Not run:

Example 1: Gaussian regression
X = matrix(rnorm(100*20),100,20)
b = matrix(0,20,1)
b[1:5] = c(5,4,3,2,1)
y = X %*% b + rnorm(100, 0, 1)

df <- data.frame(X,y)
rv.lm <- lm(y~.,df) # Regular least-squares
summary(rv.lm)

rv.hs <- bayesreg(y~.,df,prior="hs") # Horseshoe regression
rv.hs.s <- summary(rv.hs)

Expected squared prediction error for least-squares
coef_ls = coef(rv.lm)
as.numeric(sum((as.matrix(coef_ls[-1]) - b)^2) + coef_ls[1]^2)

Expected squared prediction error for horseshoe
as.numeric(sum((rv.hs$mu.beta - b)^2) + rv.hs$mu.beta0^2)

Example 2: Gaussian v Student-t robust regression
X = 1:10;
y = c(-0.6867, 1.7258, 1.9117, 6.1832, 5.3636, 7.1139, 9.5668, 10.0593, 11.4044, 6.1677);
df = data.frame(X,y)

Gaussian ridge
rv.G <- bayesreg(y~., df, model = "gaussian", prior = "ridge", n.samples = 1e3)

Student-t ridge
rv.t <- bayesreg(y~., df, model = "t", prior = "ridge", t.dof = 5, n.samples = 1e3)

Plot the different estimates with credible intervals
plot(dfX, dfy, xlab="x", ylab="y")

yhat_G <- predict(rv.G, df, bayes.avg=TRUE)
lines(df$X, yhat_G[,1], col="blue", lwd=2.5)
lines(df$X, yhat_G[,3], col="blue", lwd=1, lty="dashed")
lines(df$X, yhat_G[,4], col="blue", lwd=1, lty="dashed")

yhat_t <- predict(rv.t, df, bayes.avg=TRUE)
lines(df$X, yhat_t[,1], col="darkred", lwd=2.5)
lines(df$X, yhat_t[,3], col="darkred", lwd=1, lty="dashed")
lines(df$X, yhat_t[,4], col="darkred", lwd=1, lty="dashed")

legend(1,11,c("Gaussian","Student-t (dof=5)"),lty=c(1,1),col=c("blue","darkred"),
lwd=c(2.5,2.5), cex=0.7)

bayesreg-package 5

Example 3: Poisson/geometric regression example

X = matrix(rnorm(100*20),100,5)
b = c(0.5,-1,0,0,1)
nu = X%*%b + 1
y = rpois(lambda=exp(nu),n=length(nu))

df <- data.frame(X,y)

Fit a Poisson regression
rv.pois=bayesreg(y~.,data=df,model="poisson",prior="hs", burnin=1e4, n.samples=1e4)
summary(rv.pois)

Fit a geometric regression
rv.geo=bayesreg(y~.,data=df,model="geometric",prior="hs", burnin=1e4, n.samples=1e4)
summary(rv.geo)

Compare the two models in terms of their WAIC scores
cat(sprintf("Poisson regression WAIC=%g vs geometric regression WAIC=%g",

rv.pois$waic, rv.geo$waic))
Poisson is clearly preferred to geometric, which is good as data is generated from a Poisson!

Example 4: Logistic regression on spambase
data(spambase)

bayesreg expects binary targets to be factors
spambase$is.spam <- factor(spambase$is.spam)

First take a subset of the data (1/10th) for training, reserve the rest for testing
spambase.tr = spambase[seq(1,nrow(spambase),10),]
spambase.tst = spambase[-seq(1,nrow(spambase),10),]

Fit a model using logistic horseshoe for 2,000 samples
rv <- bayesreg(is.spam ~ ., spambase.tr, model = "logistic", prior = "horseshoe", n.samples = 2e3)

Summarise, sorting variables by their ranking importance
rv.s <- summary(rv,sort.rank=TRUE)

Make predictions about testing data -- get class predictions and class probabilities
y_pred <- predict(rv, spambase.tst, type='class')

Check how well did our predictions did by generating confusion matrix
table(y_pred, spambase.tst$is.spam)

Calculate logarithmic loss on test data
y_prob <- predict(rv, spambase.tst, type='prob')
cat('Neg Log-Like for no Bayes average, posterior mean estimates: ', sum(-log(y_prob[,1])), '\n')
y_prob <- predict(rv, spambase.tst, type='prob', sum.stat="median")
cat('Neg Log-Like for no Bayes average, posterior median estimates: ', sum(-log(y_prob[,1])), '\n')

6 bayesreg

y_prob <- predict(rv, spambase.tst, type='prob', bayes.avg=TRUE)
cat('Neg Log-Like for Bayes average: ', sum(-log(y_prob[,1])), '\n')

End(Not run)

bayesreg Fitting Bayesian Regression Models with Continuous Shrinkage Priors

Description

Fit a linear or logistic regression model using Bayesian continuous shrinkage prior distributions.
Handles ridge, lasso, horseshoe and horseshoe+ regression with logistic, Gaussian, Laplace, Student-
t, Poisson or geometric distributed targets. See bayesreg-package for more details on the features
available in this package.

Usage

bayesreg(
formula,
data,
model = "normal",
prior = "ridge",
n.samples = 1000,
burnin = 1000,
thin = 5,
t.dof = 5

)

Arguments

formula An object of class "formula": a symbolic description of the model to be fitted
using the standard R formula notation.

data A data frame containing the variables in the model.

model The distribution of the target (y) variable. Continuous or numeric variables can
be distributed as per a Gaussian distribution (model="gaussian" or model="normal"),
Laplace distribution (model = "laplace" or model = "l1") or Student-t distri-
bution ("model" = "studentt" or "model" = "t"). Integer or count data can be
distributed as per a Poisson distribution (model="poisson") or geometric distri-
bution (model="geometric"). For binary targets (factors with two levels) either
model="logistic" or "model"="binomial" should be used.

prior Which continuous shrinkage prior distribution over the regression coefficients to
use. Options include ridge regression (prior="rr" or prior="ridge"), lasso
regression (prior="lasso"), horseshoe regression (prior="hs" or prior="horseshoe")
and horseshoe+ regression (prior="hs+" or prior="horseshoe+")

n.samples Number of posterior samples to generate.

bayesreg 7

burnin Number of burn-in samples.
thin Desired level of thinning.
t.dof Degrees of freedom for the Student-t distribution.

Value

An object with S3 class "bayesreg" containing the results of the sampling process, plus some
additional information.

beta Posterior samples the regression model coefficients.
beta0 Posterior samples of the intercept parameter.
sigma2 Posterior samples of the square of the scale parameter; for Gaussian distributed

targets this is equal to the variance. For binary targets this is empty.
mu.beta The mean of the posterior samples for the regression coefficients.
mu.beta0 The mean of the posterior samples for the intercept parameter.
mu.sigma2 The mean of the posterior samples for squared scale parameter.
tau2 Posterior samples of the global shrinkage parameter.
t.stat Posterior t-statistics for each regression coefficient.
var.ranks Ranking of the covariates by their importance, with "1" denoting the most im-

portant covariate.
log.l The log-likelihood at the posterior means of the model parameters
waic The Widely Applicable Information Criterion (WAIC) score for the model
waic.dof The effective degrees-of-freedom of the model, as estimated by the WAIC.

The returned object also stores the parameters/options used to run bayesreg:

formula The object of type "formula" describing the fitted model.
model The distribution of the target (y) variable.
prior The shrinkage prior used to fit the model.
n.samples The number of samples generated from the posterior distribution.
burnin The number of burnin samples that were generated.
thin The level of thinning.
n The sample size of the data used to fit the model.
p The number of covariates in the fitted model.

Details

Draws a series of samples from the posterior distribution of a linear (Gaussian, Laplace or Student-t)
or generalized linear (logistic binary, Poisson, geometric) regression model with specified contin-
uous shrinkage prior distribution (ridge regression, lasso, horseshoe and horseshoe+) using Gibbs
sampling. The intercept parameter is always included, and is never penalised.

While only n.samples are returned, the total number of samples generated is equal to burnin+n.samples*thin.
To generate the samples of the regression coefficients, the code will use either Rue’s algorithm
(when the number of samples is twice the number of covariates) or the algorithm of Bhattacharya
et al. as appropriate. Factor variables are automatically grouped together and additional shrinkage
is applied to the set of indicator variables to which they expand.

8 bayesreg

Note

To cite this toolbox please reference:

Makalic, E. & Schmidt, D. F. High-Dimensional Bayesian Regularised Regression with the BayesReg
Package arXiv:1611.06649 [stat.CO], 2016 https://arxiv.org/pdf/1611.06649.pdf

A MATLAB implementation of the bayesreg function is also available from:

https://au.mathworks.com/matlabcentral/fileexchange/60823-flexible-bayesian-penalized-regression-modelling

Copyright (C) Daniel F. Schmidt and Enes Makalic, 2016-2021

References

Makalic, E. & Schmidt, D. F. High-Dimensional Bayesian Regularised Regression with the BayesReg
Package arXiv:1611.06649 [stat.CO], 2016 https://arxiv.org/pdf/1611.06649.pdf

Park, T. & Casella, G. The Bayesian Lasso Journal of the American Statistical Association, Vol.
103, pp. 681-686, 2008

Carvalho, C. M.; Polson, N. G. & Scott, J. G. The horseshoe estimator for sparse signals Biometrika,
Vol. 97, 465-480, 2010

Makalic, E. & Schmidt, D. F. A Simple Sampler for the Horseshoe Estimator IEEE Signal Process-
ing Letters, Vol. 23, pp. 179-182, 2016 https://arxiv.org/pdf/1508.03884v4.pdf

Bhadra, A.; Datta, J.; Polson, N. G. & Willard, B. The Horseshoe+ Estimator of Ultra-Sparse
Signals Bayesian Analysis, 2016

Polson, N. G.; Scott, J. G. & Windle, J. Bayesian inference for logistic models using Polya-Gamma
latent variables Journal of the American Statistical Association, Vol. 108, 1339-1349, 2013

Rue, H. Fast sampling of Gaussian Markov random fields Journal of the Royal Statistical Society
(Series B), Vol. 63, 325-338, 2001

Bhattacharya, A.; Chakraborty, A. & Mallick, B. K. Fast sampling with Gaussian scale-mixture
priors in high-dimensional regression arXiv:1506.04778, 2016

Schmidt, D.F. & Makalic, E. Bayesian Generalized Horseshoe Estimation of Generalized Linear
Models ECML PKDD 2019: Machine Learning and Knowledge Discovery in Databases. pp 598-
613, 2019

Stan Development Team, Stan Reference Manual (Version 2.26), Section 15.4, "Effective Sample
Size", https://mc-stan.org/docs/2_18/reference-manual/effective-sample-size-section.
html

See Also

The prediction function predict.bayesreg and summary function summary.bayesreg

Examples

Example 1: Gaussian regression
X = matrix(rnorm(100*20),100,20)
b = matrix(0,20,1)
b[1:5] = c(5,4,3,2,1)
y = X %*% b + rnorm(100, 0, 1)

https://arxiv.org/pdf/1611.06649.pdf
https://au.mathworks.com/matlabcentral/fileexchange/60823-flexible-bayesian-penalized-regression-modelling
https://arxiv.org/pdf/1611.06649.pdf
https://arxiv.org/pdf/1508.03884v4.pdf
https://mc-stan.org/docs/2_18/reference-manual/effective-sample-size-section.html
https://mc-stan.org/docs/2_18/reference-manual/effective-sample-size-section.html

bayesreg 9

df <- data.frame(X,y)
rv.lm <- lm(y~.,df) # Regular least-squares
summary(rv.lm)

rv.hs <- bayesreg(y~.,df,prior="hs") # Horseshoe regression
rv.hs.s <- summary(rv.hs)

Expected squared prediction error for least-squares
coef_ls = coef(rv.lm)
as.numeric(sum((as.matrix(coef_ls[-1]) - b)^2) + coef_ls[1]^2)

Expected squared prediction error for horseshoe
as.numeric(sum((rv.hs$mu.beta - b)^2) + rv.hs$mu.beta0^2)

Example 2: Gaussian v Student-t robust regression
X = 1:10;
y = c(-0.6867, 1.7258, 1.9117, 6.1832, 5.3636, 7.1139, 9.5668, 10.0593, 11.4044, 6.1677);
df = data.frame(X,y)

Gaussian ridge
rv.G <- bayesreg(y~., df, model = "gaussian", prior = "ridge", n.samples = 1e3)

Student-t ridge
rv.t <- bayesreg(y~., df, model = "t", prior = "ridge", t.dof = 5, n.samples = 1e3)

Plot the different estimates with credible intervals
plot(dfX, dfy, xlab="x", ylab="y")

yhat_G <- predict(rv.G, df, bayes.avg=TRUE)
lines(df$X, yhat_G[,1], col="blue", lwd=2.5)
lines(df$X, yhat_G[,3], col="blue", lwd=1, lty="dashed")
lines(df$X, yhat_G[,4], col="blue", lwd=1, lty="dashed")

yhat_t <- predict(rv.t, df, bayes.avg=TRUE)
lines(df$X, yhat_t[,1], col="darkred", lwd=2.5)
lines(df$X, yhat_t[,3], col="darkred", lwd=1, lty="dashed")
lines(df$X, yhat_t[,4], col="darkred", lwd=1, lty="dashed")

legend(1,11,c("Gaussian","Student-t (dof=5)"),lty=c(1,1),col=c("blue","darkred"),
lwd=c(2.5,2.5), cex=0.7)

Not run:

Example 3: Poisson/geometric regression example

X = matrix(rnorm(100*20),100,5)
b = c(0.5,-1,0,0,1)
nu = X%*%b + 1
y = rpois(lambda=exp(nu),n=length(nu))

10 predict.bayesreg

df <- data.frame(X,y)

Fit a Poisson regression
rv.pois=bayesreg(y~.,data=df,model="poisson",prior="hs", burnin=1e4, n.samples=1e4)
summary(rv.pois)

Fit a geometric regression
rv.geo=bayesreg(y~.,data=df,model="geometric",prior="hs", burnin=1e4, n.samples=1e4)
summary(rv.geo)

Compare the two models in terms of their WAIC scores
cat(sprintf("Poisson regression WAIC=%g vs geometric regression WAIC=%g",

rv.pois$waic, rv.geo$waic))
Poisson is clearly preferred to geometric, which is good as data is generated from a Poisson!

Example 4: Logistic regression on spambase
data(spambase)

bayesreg expects binary targets to be factors
spambase$is.spam <- factor(spambase$is.spam)

First take a subset of the data (1/10th) for training, reserve the rest for testing
spambase.tr = spambase[seq(1,nrow(spambase),10),]
spambase.tst = spambase[-seq(1,nrow(spambase),10),]

Fit a model using logistic horseshoe for 2,000 samples
rv <- bayesreg(is.spam ~ ., spambase.tr, model = "logistic", prior = "horseshoe", n.samples = 2e3)

Summarise, sorting variables by their ranking importance
rv.s <- summary(rv,sort.rank=TRUE)

Make predictions about testing data -- get class predictions and class probabilities
y_pred <- predict(rv, spambase.tst, type='class')

Check how well did our predictions did by generating confusion matrix
table(y_pred, spambase.tst$is.spam)

Calculate logarithmic loss on test data
y_prob <- predict(rv, spambase.tst, type='prob')
cat('Neg Log-Like for no Bayes average, posterior mean estimates: ', sum(-log(y_prob[,1])), '\n')
y_prob <- predict(rv, spambase.tst, type='prob', sum.stat="median")
cat('Neg Log-Like for no Bayes average, posterior median estimates: ', sum(-log(y_prob[,1])), '\n')
y_prob <- predict(rv, spambase.tst, type='prob', bayes.avg=TRUE)
cat('Neg Log-Like for Bayes average: ', sum(-log(y_prob[,1])), '\n')

End(Not run)

predict.bayesreg 11

predict.bayesreg Prediction method for Bayesian penalised regression (bayesreg)
models

Description

Predict values based on Bayesian penalised regression (bayesreg) models.

Usage

S3 method for class 'bayesreg'
predict(
object,
newdata,
type = "linpred",
bayes.avg = FALSE,
sum.stat = "mean",
CI = 95,
...

)

Arguments

object an object of class "bayesreg" created as a result of a call to bayesreg.

newdata A data frame providing the variables from which to produce predictions.

type The type of predictions to produce; if type="linpred" it will return the linear
predictor for binary, count and continuous data. If type="prob" it will return
predictive probability estimates for provided ’y’ data (see below for more de-
tails). If type="response" it will return the predicted conditional mean of the
target (see below for more details). If type="class" and the data is binary, it
will return the best guess at the class of the target variable.

bayes.avg logical; whether to produce predictions using Bayesian averaging.

sum.stat The type of summary statistic to use; either sum.stat="mean" or sum.stat="median".

CI The size (level, as a percentage) of the credible interval to report (default: 95,
i.e. a 95% credible interval)

... Further arguments passed to or from other methods.

Value

predict.bayesreg produces a vector or matrix of predictions of the specified type. If bayes.avg
is FALSE a matrix with a single column pred is returned, containing the predictions.

If bayes.avg is TRUE, three additional columns are returned: se(pred), which contains standard
errors for the predictions, and two columns containing the credible intervals (at the specified level)
for the predictions.

12 predict.bayesreg

Details

predict.bayesreg produces predicted values using variables from the specified data frame. The
type of predictions produced depend on the value of the parameter type:

• If type="linpred", the predictions that are returned will be the value of the linear predictor
formed from the model coefficients and the provided data.

• If type="response", the predictions will be the conditional mean for each data point. For
Gaussian, Laplace and Student-t targets the conditional mean is simply equal to the linear
predictor; for binary data, the predictions will be the probability of the target being equal to
the second level of the factor variable; for count data, the conditional mean will be exp(linear
predictor).

• If type="prob", the predictions will be probabilities. The specified data frame must include
a column with the same name as the target variable on which the model was created. The
predictions will then be the probability (density) values for these target values.

• If type="class" and the target variable is binary, the predictions will be the most likely class.

If bayes.avg is FALSE the predictions will be produced by using a summary of the posterior samples
of the coefficients and scale parameters as estimates for the model. If bayes.avg is TRUE, the
predictions will be produced by posterior averaging over the posterior samples of the coefficients
and scale parameters, allowing the uncertainty in the estimation process to be explicitly taken into
account in the prediction process.

If sum.stat="mean" and bayes.avg is FALSE, the mean of the posterior samples will be used
as point estimates for making predictions. Likewise, if sum.stat="median" and bayes.avg is
FALSE, the co-ordinate wise posterior medians will be used as estimates for making predictions.
If bayes.avg is TRUE and type!="prob", the posterior mean (median) of the predictions from
each of the posterior samples will be used as predictions. The value of sum.stat has no effect if
type="prob".

See Also

The model fitting function bayesreg and summary function summary.bayesreg

Examples

Example 1: Fitting linear models to data and generating credible intervals
X = 1:10;
y = c(-0.6867, 1.7258, 1.9117, 6.1832, 5.3636, 7.1139, 9.5668, 10.0593, 11.4044, 6.1677);
df = data.frame(X,y)

Gaussian ridge
rv.L <- bayesreg(y~., df, model = "laplace", prior = "ridge", n.samples = 1e3)

Plot the different estimates with credible intervals
plot(dfX, dfy, xlab="x", ylab="y")

yhat <- predict(rv.L, df, bayes.avg=TRUE)
lines(df$X, yhat[,1], col="blue", lwd=2.5)
lines(df$X, yhat[,3], col="blue", lwd=1, lty="dashed")

predict.bayesreg 13

lines(df$X, yhat[,4], col="blue", lwd=1, lty="dashed")
yhat <- predict(rv.L, df, bayes.avg=TRUE, sum.stat = "median")
lines(df$X, yhat[,1], col="red", lwd=2.5)

legend(1,11,c("Posterior Mean (Bayes Average)","Posterior Median (Bayes Average)"),
lty=c(1,1),col=c("blue","red"),lwd=c(2.5,2.5), cex=0.7)

Example 2: Predictive density for continuous data
X = 1:10;
y = c(-0.6867, 1.7258, 1.9117, 6.1832, 5.3636, 7.1139, 9.5668, 10.0593, 11.4044, 6.1677);
df = data.frame(X,y)

Gaussian ridge
rv.G <- bayesreg(y~., df, model = "gaussian", prior = "ridge", n.samples = 1e3)

Produce predictive density for X=2
df.tst = data.frame(y=seq(-7,12,0.01),X=2)
prob_noavg_mean <- predict(rv.G, df.tst, bayes.avg=FALSE, type="prob", sum.stat = "mean")
prob_noavg_med <- predict(rv.G, df.tst, bayes.avg=FALSE, type="prob", sum.stat = "median")
prob_avg <- predict(rv.G, df.tst, bayes.avg=TRUE, type="prob")

Plot the density
plot(NULL, xlim=c(-7,12), ylim=c(0,0.14), xlab="y", ylab="p(y)")
lines(df.tst$y, prob_noavg_mean[,1],lwd=1.5)
lines(df.tst$y, prob_noavg_med[,1], col="red",lwd=1.5)
lines(df.tst$y, prob_avg[,1], col="green",lwd=1.5)

legend(-7,0.14,c("Mean (no averaging)","Median (no averaging)","Bayes Average"),
lty=c(1,1,1),col=c("black","red","green"),lwd=c(1.5,1.5,1.5), cex=0.7)

title('Predictive densities for X=2')

Not run:

Example 3: Poisson (count) regression

X = matrix(rnorm(100*20),100,5)
b = c(0.5,-1,0,0,1)
nu = X%*%b + 1
y = rpois(lambda=exp(nu),n=length(nu))

df <- data.frame(X,y)

Fit a Poisson regression
rv.pois = bayesreg(y~.,data=df, model="poisson", prior="hs", burnin=1e4, n.samples=1e4)

Make a prediction for the first five rows
By default this predicts the log-rate (i.e., the linear predictor)
predict(rv.pois,df[1:5,])

14 spambase

This is the response (i.e., conditional mean of y)
exp(predict(rv.pois,df[1:5,]))

Same as above ... compare to the actual targets
cbind(exp(predict(rv.pois,df[1:5,])), y[1:5])

Slightly different as E[exp(x)]!=exp(E[x])
predict(rv.pois,df[1:5,], type="response", bayes.avg=TRUE)

99% credible interval for response
predict(rv.pois,df[1:5,], type="response", bayes.avg=TRUE, CI=99)

Example 4: Logistic regression on spambase
data(spambase)

bayesreg expects binary targets to be factors
spambase$is.spam <- factor(spambase$is.spam)

First take a subset of the data (1/10th) for training, reserve the rest for testing
spambase.tr = spambase[seq(1,nrow(spambase),10),]
spambase.tst = spambase[-seq(1,nrow(spambase),10),]

Fit a model using logistic horseshoe for 2,000 samples
rv <- bayesreg(is.spam ~ ., spambase.tr, model = "logistic", prior = "horseshoe", n.samples = 2e3)

Summarise, sorting variables by their ranking importance
rv.s <- summary(rv,sort.rank=TRUE)

Make predictions about testing data -- get class predictions and class probabilities
y_pred <- predict(rv, spambase.tst, type='class')
y_prob <- predict(rv, spambase.tst, type='prob')

Check how well our predictions did by generating confusion matrix
table(y_pred, spambase.tst$is.spam)

Calculate logarithmic loss on test data
y_prob <- predict(rv, spambase.tst, type='prob')
cat('Neg Log-Like for no Bayes average, posterior mean estimates: ', sum(-log(y_prob[,1])), '\n')
y_prob <- predict(rv, spambase.tst, type='prob', sum.stat="median")
cat('Neg Log-Like for no Bayes average, posterior median estimates: ', sum(-log(y_prob[,1])), '\n')
y_prob <- predict(rv, spambase.tst, type='prob', bayes.avg=TRUE)
cat('Neg Log-Like for Bayes average: ', sum(-log(y_prob[,1])), '\n')

End(Not run)

spambase Spambase

spambase 15

Description

This is a well known dataset with a binary target obtainable from the UCI machine learning dataset
archive. Each row is an e-mail, which is considered to be either spam or not spam. The dataset
contains 48 attributes that measure the percentage of times a particular word appears in the email,
6 attributes that measure the percentage of times a particular character appeared in the email, plus
three attributes measuring run-lengths of capital letters.

Usage

data(spambase)

Format

A data frame with 4,601 rows and 58 variables (1 categorical, 57 continuous).

is.spam Is the email considered to be spam? (0=no,1=yes)

word.freq.make Percentage of times the word ’make’ appeared in the e-mail

word.freq.address Percentage of times the word ’address’ appeared in the e-mail

word.freq.all Percentage of times the word ’all’ appeared in the e-mail

word.freq.3d Percentage of times the word ’3d’ appeared in the e-mail

word.freq.our Percentage of times the word ’our’ appeared in the e-mail

word.freq.over Percentage of times the word ’over’ appeared in the e-mail

word.freq.remove Percentage of times the word ’remove’ appeared in the e-mail

word.freq.internet Percentage of times the word ’internet’ appeared in the e-mail

word.freq.order Percentage of times the word ’order’ appeared in the e-mail

word.freq.mail Percentage of times the word ’mail’ appeared in the e-mail

word.freq.receive Percentage of times the word ’receive’ appeared in the e-mail

word.freq.will Percentage of times the word ’will’ appeared in the e-mail

word.freq.people Percentage of times the word ’people’ appeared in the e-mail

word.freq.report Percentage of times the word ’report’ appeared in the e-mail

word.freq.addresses Percentage of times the word ’addresses’ appeared in the e-mail

word.freq.free Percentage of times the word ’free’ appeared in the e-mail

word.freq.business Percentage of times the word ’business’ appeared in the e-mail

word.freq.email Percentage of times the word ’email’ appeared in the e-mail

word.freq.you Percentage of times the word ’you’ appeared in the e-mail

word.freq.credit Percentage of times the word ’credit’ appeared in the e-mail

word.freq.your Percentage of times the word ’your’ appeared in the e-mail

word.freq.font Percentage of times the word ’font’ appeared in the e-mail

word.freq.000 Percentage of times the word ’000’ appeared in the e-mail

word.freq.money Percentage of times the word ’money’ appeared in the e-mail

word.freq.hp Percentage of times the word ’hp’ appeared in the e-mail

16 spambase

word.freq.hpl Percentage of times the word ’hpl’ appeared in the e-mail

word.freq.george Percentage of times the word ’george’ appeared in the e-mail

word.freq.650 Percentage of times the word ’650’ appeared in the e-mail

word.freq.lab Percentage of times the word ’lab’ appeared in the e-mail

word.freq.labs Percentage of times the word ’labs’ appeared in the e-mail

word.freq.telnet Percentage of times the word ’telnet’ appeared in the e-mail

word.freq.857 Percentage of times the word ’857’ appeared in the e-mail

word.freq.data Percentage of times the word ’data’ appeared in the e-mail

word.freq.415 Percentage of times the word ’415’ appeared in the e-mail

word.freq.85 Percentage of times the word ’85’ appeared in the e-mail

word.freq.technology Percentage of times the word ’technology’ appeared in the e-mail

word.freq.1999 Percentage of times the word ’1999’ appeared in the e-mail

word.freq.parts Percentage of times the word ’parts’ appeared in the e-mail

word.freq.pm Percentage of times the word ’pm’ appeared in the e-mail

word.freq.direct Percentage of times the word ’direct’ appeared in the e-mail

word.freq.cs Percentage of times the word ’cs’ appeared in the e-mail

word.freq.meeting Percentage of times the word ’meeting’ appeared in the e-mail

word.freq.original Percentage of times the word ’original’ appeared in the e-mail

word.freq.project Percentage of times the word ’project’ appeared in the e-mail

word.freq.re Percentage of times the word ’re’ appeared in the e-mail

word.freq.edu Percentage of times the word ’edu’ appeared in the e-mail

word.freq.table Percentage of times the word ’table’ appeared in the e-mail

word.freq.conference Percentage of times the word ’conference’ appeared in the e-mail

char.freq.; Percentage of times the character ’;’ appeared in the e-mail

char.freq.(Percentage of times the character ’(’ appeared in the e-mail

char.freq.[Percentage of times the character ’[’ appeared in the e-mail

char.freq.! Percentage of times the character ’!’ appeared in the e-mail

char.freq.$ Percentage of times the character ’$’ appeared in the e-mail

char.freq.# Percentage of times the character ’#’ appeared in the e-mail

capital.run.length.average Average length of contiguous runs of capital letters in the e-mail

capital.run.length.longest Maximum length of contiguous runs of capital letters in the e-mail

capital.run.length.total Total number of capital letters in the e-mail

Source

https://archive.ics.uci.edu/ml/datasets/spambase/

https://archive.ics.uci.edu/ml/datasets/spambase/

summary.bayesreg 17

summary.bayesreg Summarization method for Bayesian penalised regression (bayesreg)
models

Description

summary method for Bayesian regression models fitted using bayesreg.

Usage

S3 method for class 'bayesreg'
summary(object, sort.rank = FALSE, display.OR = FALSE, CI = 95, ...)

Arguments

object An object of class "bayesreg" created as a result of a call to bayesreg.

sort.rank logical; if TRUE, the variables in the summary will be sorted by their importance
as determined by their rank estimated by the Bayesian feature ranking algorithm.

display.OR logical; if TRUE, the variables will be summarised in terms of their cross-sectional
odds-ratios rather than their regression coefficients (logistic regression only).

CI numerical; the level of the credible interval reported in summary. Default is 95
(i.e., 95% credible interval).

... Further arguments passed to or from other methods.

Value

Returns an object with the following fields:

log.l The log-likelihood of the model at the posterior mean estimates of the regression
coefficients.

waic The Widely Applicable Information Criterion (WAIC) score of the model.

waic.dof The effective degrees-of-freedom of the model, as estimated by the WAIC.

r2 For non-binary data, the R^2 statistic.

sd.error For non-binary data, the estimated standard deviation of the errors.

p.r2 For binary data, the pseudo-R^2 statistic.

mu.coef The posterior means of the regression coefficients.

se.coef The posterior standard deviations of the regression coefficients.

CI.coef The posterior credible interval for the regression coefficients, at the level speci-
fied (default: 95%).

med.OR For binary data, the posterior median of the cross-sectional odds-ratios.

se.OR For binary data, the posterior standard deviation of the cross-sectional odds-
ratios.

18 summary.bayesreg

CI.OR For binary data, the posterior credible interval for the cross-sectional odds-
ratios.

t.stat The posterior t-statistic for the coefficients.

n.stars The significance level for the variable (see above).

rank The variable importance rank as estimated by the Bayesian feature ranking al-
gorithm (see above).

ESS The effective sample size for the variable.

log.l0 For binary data, the log-likelihood of the null model (i.e., with only an intercept).

Details

The summary method computes a number of summary statistics and displays these for each variable
in a table, along with suitable header information.

For continuous target variables, the header information includes a posterior estimate of the standard
deviation of the random disturbances (errors), the R2 statistic and the Widely applicable informa-
tion criterion (WAIC) statistic. For logistic regression models, the header information includes the
negative log-likelihood at the posterior mean of the regression coefficients, the pseudo R2 score
and the WAIC statistic. For count data (Poisson and geometric), the header information includes an
estimate of the degree of overdispersion (observed variance divided by expected variance around
the conditional mean, with a value < 1 indicating underdispersion), the pseudo R2 score and the
WAIC statistic.

The main table summarises properties of the coefficients for each of the variables. The first column
is the variable name. The second and third columns are either the mean and standard error of the co-
efficients, or the median and standard error of the cross-sectional odds-ratios if display.OR=TRUE.

The fourth and fifth columns are the end-points of the credible intervals of the coefficients (odds-
ratios). The sixth column displays the posterior t-statistic, calculated as the ratio of the posterior
mean on the posterior standard deviation for the coefficient. The seventh column is the importance
rank assigned to the variable by the Bayesian feature ranking algorithm.

In between the seventh and eighth columns are up to two asterisks indicating significance; a variable
scores a first asterisk if the 75% credible interval does not include zero, and scores a second asterisk
if the 95% credible interval does not include zero. The final column gives an estimate of the effective
sample size for the variable, ranging from 0 to n.samples, which indicates the effective number
of i.i.d draws from the posterior (if we could do this instead of using MCMC) represented by
the samples we have drawn. This quantity is computed using the algorithm presented in the Stan
Bayesian sampling package documentation.

See Also

The model fitting function bayesreg and prediction function predict.bayesreg.

Examples

X = matrix(rnorm(100*20),100,20)
b = matrix(0,20,1)
b[1:9] = c(0,0,0,0,5,4,3,2,1)
y = X %*% b + rnorm(100, 0, 1)
df <- data.frame(X,y)

summary.bayesreg 19

rv.hs <- bayesreg(y~.,df,prior="hs") # Horseshoe regression

Summarise without sorting by variable rank
rv.hs.s <- summary(rv.hs)

Summarise sorting by variable rank and provide 75% credible intervals
rv.hs.s <- summary(rv.hs, sort.rank = TRUE, CI=75)

Index

∗ datasets
spambase, 14

bayesreg, 3, 6, 11, 12, 17, 18
bayesreg-package, 2

formula, 6, 7

predict.bayesreg, 8, 10, 18

spambase, 14
summary.bayesreg, 8, 12, 17

20

	bayesreg-package
	bayesreg
	predict.bayesreg
	spambase
	summary.bayesreg
	Index

