Package: mixKernel 0.9-1

Nathalie Vialaneix

mixKernel: Omics Data Integration Using Kernel Methods

Kernel-based methods are powerful methods for integrating heterogeneous types of data. mixKernel aims at providing methods to combine kernel for unsupervised exploratory analysis. Different solutions are provided to compute a meta-kernel, in a consensus way or in a way that best preserves the original topology of the data. mixKernel also integrates kernel PCA to visualize similarities between samples in a non linear space and from the multiple source point of view <doi:10.1093/bioinformatics/btx682>. A method to select (as well as funtions to display) important variables is also provided <doi:10.1093/nargab/lqac014>.

Authors:Nathalie Vialaneix [aut, cre], Celine Brouard [aut], Remi Flamary [aut], Julien Henry [aut], Jerome Mariette [aut]

mixKernel_0.9-1.tar.gz
mixKernel_0.9-1.tar.gz(r-4.5-noble)mixKernel_0.9-1.tar.gz(r-4.4-noble)
mixKernel_0.9-1.tgz(r-4.4-emscripten)mixKernel_0.9-1.tgz(r-4.3-emscripten)
mixKernel.pdf |mixKernel.html
mixKernel/json (API)
NEWS

# Install 'mixKernel' in R:
install.packages('mixKernel', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.78 score 9 scripts 361 downloads 3 mentions 9 exports 129 dependencies

Last updated 10 months agofrom:245b17ef1a. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-linuxOKNov 23 2024

Exports:center.scalecim.kernelcombine.kernelscompute.kernelkernel.pcakernel.pca.permutemixKernel.users.guideplotVar.kernel.pcaselect.features

Dependencies:ade4apeaskpassbase64encBHBiobaseBiocGenericsBiocParallelbiomformatBiostringsbslibcachemcliclustercodetoolscolorspacecommonmarkcorpcorcorrplotcpp11crayoncurldata.tabledigestdplyrellipseevaluatefansifarverfastmapfontawesomeforeachformatRfsfutile.loggerfutile.optionsgenericsGenomeInfoDbGenomeInfoDbDataggplot2ggrepelglueGPArotationgridExtragsignalgtableherehighrhtmltoolshtmlwidgetshttrigraphIRangesisobanditeratorsjquerylibjsonliteknitrlabelinglambda.rlatticeLDRToolslifecyclemagrittrmarkdownMASSMatrixmatrixStatsmemoisemgcvmimemixOmicsmnormtmulttestmunsellnlmeopensslpermutephyloseqpillarpixmappkgconfigplyrpngpracmapsychpurrrquadprogR6rappdirsrARPACKRColorBrewerRcppRcppArmadilloRcppEigenRcppTOMLreshape2reticulaterglrhdf5rhdf5filtersRhdf5librlangrmarkdownrprojrootRSpectraS4VectorssassscalessnowspstringistringrsurvivalsystibbletidyrtidyselecttinytexUCSC.utilsutf8vctrsveganviridisLitewithrxfunXVectoryamlzlibbioc

Installation instruction for mixKernel

Rendered froma-mixKernelInstallation.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2024-01-28
Started: 2022-01-13

Data Integration using Unsupervised Multiple Kernel Learning

Rendered frommixKernelUsersGuide.Rmdusingknitr::rmarkdownon Nov 23 2024.

Last update: 2024-01-28
Started: 2022-01-13