Package: crov 0.3.0

Javier Espinosa

crov: Constrained Regression Model for an Ordinal Response and Ordinal Predictors

Fits a constrained regression model for an ordinal response with ordinal predictors and possibly others, Espinosa and Hennig (2019) <doi:10.1007/s11222-018-9842-2>. The parameter estimates associated with an ordinal predictor are constrained to be monotonic. If a monotonicity direction (isotonic or antitonic) is not specified for an ordinal predictor by the user, then one of the available methods will either establish it or drop the monotonicity assumption. Two monotonicity tests are also available to test the null hypothesis of monotonicity over a set of parameters associated with an ordinal predictor.

Authors:Javier Espinosa <[email protected]>

crov_0.3.0.tar.gz
crov_0.3.0.tar.gz(r-4.5-noble)crov_0.3.0.tar.gz(r-4.4-noble)
crov_0.3.0.tgz(r-4.4-emscripten)crov_0.3.0.tgz(r-4.3-emscripten)
crov.pdf |crov.html
crov/json (API)

# Install 'crov' in R:
install.packages('crov', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 2 scripts 200 downloads 6 exports 2 dependencies

Last updated 1 years agofrom:947d800a0a. Checks:OK: 1 NOTE: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 17 2024
R-4.5-linuxNOTENov 17 2024

Exports:confRegCCRconfRegUCRandUCCRmdcpmonoTestBonfmonoTestConfRegplotCMLE

Dependencies:gtoolsVGAM