Package: l0ara 0.1.6

Wenchuan Guo

l0ara: Sparse Generalized Linear Model with L0 Approximation for Feature Selection

An efficient procedure for feature selection for generalized linear models with L0 penalty, including linear, logistic, Poisson, gamma, inverse Gaussian regression. Adaptive ridge algorithms are used to fit the models.

Authors:Wenchuan Guo, Shujie Ma, Zhenqiu Liu

l0ara_0.1.6.tar.gz
l0ara_0.1.6.tar.gz(r-4.5-noble)l0ara_0.1.6.tar.gz(r-4.4-noble)
l0ara_0.1.6.tgz(r-4.4-emscripten)l0ara_0.1.6.tgz(r-4.3-emscripten)
l0ara.pdf |l0ara.html
l0ara/json (API)
NEWS

# Install 'l0ara' in R:
install.packages('l0ara', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

1.70 score 5 scripts 137 downloads 2 exports 2 dependencies

Last updated 5 years agofrom:30303f9789. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 21 2024
R-4.5-linux-x86_64OKDec 21 2024

Exports:cv.l0aral0ara

Dependencies:RcppRcppArmadillo