Package: inaparc 1.2.0

Zeynel Cebeci

inaparc: Initialization Algorithms for Partitioning Cluster Analysis

Partitioning clustering algorithms divide data sets into k subsets or partitions so-called clusters. They require some initialization procedures for starting the algorithms. Initialization of cluster prototypes is one of such kind of procedures for most of the partitioning algorithms. Cluster prototypes are the centers of clusters, i.e. centroids or medoids, representing the clusters in a data set. In order to initialize cluster prototypes, the package 'inaparc' contains a set of the functions that are the implementations of several linear time-complexity and loglinear time-complexity methods in addition to some novel techniques. Initialization of fuzzy membership degrees matrices is another important task for starting the probabilistic and possibilistic partitioning algorithms. In order to initialize membership degrees matrices required by these algorithms, a number of functions based on some traditional and novel initialization techniques are also available in the package 'inaparc'.

Authors:Zeynel Cebeci [aut, cre], Cagatay Cebeci [aut]

inaparc_1.2.0.tar.gz
inaparc_1.2.0.tar.gz(r-4.5-noble)inaparc_1.2.0.tar.gz(r-4.4-noble)
inaparc_1.2.0.tgz(r-4.4-emscripten)inaparc_1.2.0.tgz(r-4.3-emscripten)
inaparc.pdf |inaparc.html
inaparc/json (API)
NEWS

# Install 'inaparc' in R:
install.packages('inaparc', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.69 score 5 packages 33 scripts 516 downloads 32 exports 3 dependencies

Last updated 2 years agofrom:cf23549379. Checks:OK: 1 NOTE: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-linuxNOTENov 23 2024

Exports:aldaoudballhallcrsampfigenfirstkforgyget.algorithmshartiganwongimembonesimembrandinofrepinscsfinsdevis.inaparckkzkmppksegmentskstepslastklhsmaximinlhsrandommaximinmscseekrsamprsegmentscseekscseek2spaethssamptopbottomuniquekursamp

Dependencies:kpeakslhsRcpp

Readme and manuals

Help Manual

Help pageTopics
Initialization Algorithms for Partitioning Cluster Analysisinaparc-package
Initialization of cluster prototypes using Al-Daoud's algorithmaldaoud
Initialization of cluster prototypes using Ball & Hall's algorithmballhall
Initialization of cluster prototypes using the centers of random samplescrsamp
Initialization of membership degrees over class range of a selected featurefigen
Initialization of cluster prototypes using the first k objectsfirstk
Initialization of cluster prototypes using Forgy's algorithmforgy
Get the names of algorithms in 'inaparc'get.algorithms
Initialization of cluster prototypes using Hartigan-Wong's algorithmhartiganwong
Initialization of a crisp membership matrix using a selected clusterimembones
Initialization of membership matrix using simple random samplingimembrand
Initialization of cluster prototypes using Inofrep algorithminofrep
Initialization cluster prototypes using Inscsf algorithminscsf
Initialization of cluster prototypes using Insdev algorithminsdev
Checking the object class for 'inaparc'is.inaparc
Initialization of cluster prototypes using KKZ algorithmkkz
Initialization of cluster prototypes using K-means++ algorithmkmpp
Initialization of cluster prototypes using the centers of <k> segmentsksegments
Initialization of cluster prototypes using the centers of <k> blocksksteps
Initialization of cluster prototypes using the last <k> objectslastk
Initialization of cluster prototypes using Maximin LHSlhsmaximin
Initialization of cluster prototypes using random LHSlhsrandom
Initialization of cluster prototypes using Maximin algorithmmaximin
Initialization of cluster prototypes using the modified SCS algorithmmscseek
Initialization of cluster prototypes using simple random samplingrsamp
Initialization of cluster prototypes using a randomly selected segmentrsegment
Initialization of cluster prototypes using SCS algorithmscseek
Initialization of cluster prototypes using SCS algorithm over a selected featurescseek2
Initialization of cluster prototypes using Spaeth's algorithmspaeth
Initialization of cluster prototypes using systematic random samplingssamp
Initialization of cluster prototypes using the top and bottom objectstopbottom
Initialization of cluster prototypes over the unique valuesuniquek
Initialization of cluster prototypes using random sampling on each futureursamp