Package: nleqslv 3.3.5

Berend Hasselman
nleqslv: Solve Systems of Nonlinear Equations
Solve a system of nonlinear equations using a Broyden or a Newton method with a choice of global strategies such as line search and trust region. There are options for using a numerical or user supplied Jacobian, for specifying a banded numerical Jacobian and for allowing a singular or ill-conditioned Jacobian.
Authors:
nleqslv_3.3.5.tar.gz
nleqslv_3.3.5.tar.gz(r-4.5-noble)nleqslv_3.3.5.tar.gz(r-4.4-noble)
nleqslv_3.3.5.tgz(r-4.4-emscripten)nleqslv_3.3.5.tgz(r-4.3-emscripten)
nleqslv.pdf |nleqslv.html✨
nleqslv/json (API)
NEWS
# Install 'nleqslv' in R: |
install.packages('nleqslv', repos = 'https://cloud.r-project.org') |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:841972b2cd. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 31 2025 |
R-4.5-linux-x86_64 | OK | Mar 31 2025 |
R-4.4-linux-x86_64 | OK | Mar 31 2025 |
Exports:nleqslvsearchZerostestnslv
Dependencies:
Citation
To cite package ‘nleqslv’ in publications use:
Hasselman B (2023). nleqslv: Solve Systems of Nonlinear Equations. R package version 3.3.5, https://CRAN.R-project.org/package=nleqslv.
ATTENTION: This citation information has been auto-generated from the package DESCRIPTION file and may need manual editing, see ‘help("citation")’.
Corresponding BibTeX entry:
@Manual{, title = {nleqslv: Solve Systems of Nonlinear Equations}, author = {Berend Hasselman}, year = {2023}, note = {R package version 3.3.5}, url = {https://CRAN.R-project.org/package=nleqslv}, }
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Solve Systems of Nonlinear Equations | nleqslv-package nleqslv.Intro |
Solving systems of nonlinear equations with Broyden or Newton | nleqslv |
Detailed iteration report of nleqslv | Iteration report |
Printing the result of 'testnslv' | print print.test.nleqslv |
Solve a nonlinear equation system with multiple roots from multiple initial estimates | searchZeros |
Test different methods for solving with 'nleqslv' | testnslv |