
Package: nleqslv (via r-universe)
August 23, 2024

Version 3.3.5

Title Solve Systems of Nonlinear Equations

Date 2023-11-25

Author Berend Hasselman

Maintainer Berend Hasselman <bhh@xs4all.nl>

Description Solve a system of nonlinear equations using a Broyden or a
Newton method with a choice of global strategies such as line
search and trust region. There are options for using a
numerical or user supplied Jacobian, for specifying a banded
numerical Jacobian and for allowing a singular or
ill-conditioned Jacobian.

License GPL (>= 2)

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-11-26 23:30:14 UTC

Contents

nleqslv-package . 2
nleqslv . 3
nleqslv-iterationreport . 9
print.test.nleqslv . 13
searchZeros . 14
testnslv . 16

Index 19

1

2 nleqslv-package

nleqslv-package Solve Systems of Nonlinear Equations

Description

Solve a system of nonlinear equations using a Broyden or a Newton method with a choice of global
strategies such as line search and trust region. There are options for using a numerical or user
supplied Jacobian, for specifying a banded numerical Jacobian and for allowing a singular or ill-
conditioned Jacobian.

Details

The nleqslv package provides two algorithms for solving (dense) nonlinear systems of equations.
The methods provided are

• a Broyden Secant method where the matrix of derivatives is updated after each major iteration
using the Broyden rank 1 update.

• a full Newton method where the Jacobian matrix of derivatives is recalculated at each iteration

Both methods utilize global strategies such as line search or trust region methods whenever the
standard Newton/Broyden step does not lead to a point closer to a root of the equation system. Both
methods can also be used without a norm reducing global strategy. Line search may be either cubic,
quadratic or geometric. The trust region methods are either the double dogleg method, the Powell
single dogleg method or a Levenberg-Marquardt type method.

There is a facility for specifying that the Jacobian is banded; this can significantly speedup the
calculation of a numerical Jacobian when the number of sub- and super diagonals is small compared
to the size of the system of equations. For example the Jacobian of a tridiagonal system can be
calculated with only three evaluations of the function.

The package provides an option to attempt to solve the system of equations when the Jacobian
is singular or ill-conditioned using an approximation to the Moore-Penrose pseudoinverse of the
Jacobian.

The algorithms provided in this package are derived from Dennis and Schnabel (1996). The code
is written in Fortran 77 and Fortran 95 and uses Lapack and BLAS routines as provided by the R
system.

References

Dennis, J.E. Jr and Schnabel, R.B. (1996), Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Siam.

nleqslv 3

nleqslv Solving systems of nonlinear equations with Broyden or Newton

Description

The function solves a system of nonlinear equations with either a Broyden or a full Newton method.
It provides line search and trust region global strategies for difficult systems.

Usage

nleqslv(x, fn, jac=NULL, ...,
method = c("Broyden", "Newton"),
global = c("dbldog", "pwldog",

"cline", "qline", "gline", "hook", "none"),
xscalm = c("fixed","auto"),
jacobian=FALSE,
control = list()

)

Arguments

x A numeric vector with an initial guess of the root of the function.

fn A function of x returning a vector of function values with the same length as the
vector x.

jac A function to return the Jacobian for the fn function. For a vector valued func-
tion fn the Jacobian must be a numeric matrix of the correct dimensions. For a
scalar valued function fn the jac function may return a scalar. If not supplied
numerical derivatives will be used.

... Further arguments to be passed to fn and jac.

method The method to use for finding a solution. See ‘Details’.

global The global strategy to apply. See ‘Details’.

xscalm The type of x scaling to use. See ‘Details’.

jacobian A logical indicating if the estimated (approximate) jacobian in the solution should
be returned. See ‘Details’.

control A named list of control parameters. See ‘Details’.

Details

The algorithms implemented in nleqslv are based on Dennis and Schnabel (1996).

Methods:
Method Broyden starts with a computed Jacobian of the function and then updates this Jacobian
after each successful iteration using the so-called Broyden update. This method often shows super
linear convergence towards a solution. When nleqslv determines that it cannot continue with the
current Broyden matrix it will compute a new Jacobian.

4 nleqslv

Method Newton calculates a Jacobian of the function fn at each iteration. Close to a solution this
method will usually show quadratic convergence.
Both methods apply a so-called (backtracking) global strategy to find a better (more acceptable)
iterate. The function criterion used by the algorithm is half of the sum of squares of the function
values and “acceptable” means sufficient decrease of the current function criterion value com-
pared to that of the previous iteration. A comprehensive discussion of these issues can be found
in Dennis and Schnabel (1996). Both methods apply an unpivoted QR-decomposition to the Ja-
cobian as implemented in Lapack. The Broyden method applies a rank-1 update to the Jacobian
at the end of each iteration and is based on a simplified and modernized version of the algorithm
described in Reichel and Gragg (1990).

Global strategies:
When applying a full Newton or Broyden step does not yield a sufficiently smaller function crite-
rion value nleqslv will attempt to decrease the steplength using one of several so-called global
strategies.
The global argument indicates which global strategy to use or to use no global strategy

cline a cubic line search
qline a quadratic line search
gline a geometric line search
dbldog a trust region method using the double dogleg method as described in Dennis and Schn-

abel (1996)
pwldog a trust region method using the Powell dogleg method as developed by Powell (1970).
hook a trust region method described by Dennis and Schnabel (1996) as The locally constrained

optimal (“hook”) step. It is equivalent to a Levenberg-Marquardt algorithm as described in
Moré (1978) and Nocedal and Wright (2006).

none Only a pure local Newton or Broyden iteration is used. The maximum stepsize (see below)
is taken into account. The default maximum number of iterations (see below) is set to 20.

The double dogleg method is the default global strategy employed by this package.
Which global strategy to use in a particular situation is a matter of trial and error. When one of
the trust region methods fails, one of the line search strategies should be tried. Sometimes a trust
region will work and sometimes a line search method; neither has a clear advantage but in many
cases the double dogleg method works quite well.
When the function to be solved returns non-finite function values for a parameter vector x and the
algorithm is not evaluating a numerical Jacobian, then any non-finite values will be replaced by a
large number forcing the algorithm to backtrack, i.e. decrease the line search factor or decrease
the trust region radius.

Scaling:
The elements of vector x may be scaled during the search for a zero of fn. The xscalm argument
provides two possibilities for scaling

fixed the scaling factors are set to the values supplied in the control argument and remain
unchanged during the iterations. The scaling factor of any element of x should be set to
the inverse of the typical value of that element of x, ensuring that all elements of x are
approximately equal in size.

auto the scaling factors are calculated from the euclidean norms of the columns of the Jacobian
matrix. When a new Jacobian is computed, the scaling values will be set to the euclidean

nleqslv 5

norm of the corresponding column if that is larger than the current scaling value. Thus the
scaling values will not decrease during the iteration. This is the method described in Moré
(1978). Usually manual scaling is preferable.

Jacobian:
When evaluating a numerical Jacobian, an error message will be issued on detecting non-finite
function values. An error message will also be issued when a user supplied jacobian contains
non-finite entries.
When the jacobian argument is set to TRUE the final Jacobian or Broyden matrix will be returned
in the return list. The default value is FALSE; i.e. to not return the final matrix. There is no
guarantee that the final Broyden matrix resembles the actual Jacobian.
The package can cope with a singular or ill-conditioned Jacobian if needed by setting the allowSingular
component of the control argument. The method used is described in Dennis and Schnabel
(1996); it is equivalent to a Levenberg-Marquardt type adjustment with a small damping factor.
There is no guarantee that this method will be successful. Warning: nleqslv may report spurious
convergence in this case.
By default nleqslv returns an error if a Jacobian becomes singular or very ill-conditioned. A
Jacobian is considered to be very ill-conditioned when the estimated inverse condition is less than
or equal to a specified tolerance with a default value equal to 10−12; this can be changed and made
smaller with the cndtol item of the control argument. There is no guarantee that any change
will be effective.

Control options:
The control argument is a named list that can supply any of the following components:

xtol The relative steplength tolerance. When the relative steplength of all scaled x values is
smaller than this value convergence is declared. The default value is 10−8.

ftol The function value tolerance. Convergence is declared when the largest absolute function
value is smaller than ftol. The default value is 10−8.

btol The backtracking tolerance. When the relative steplength in a backtracking step to find an
acceptable point is smaller than the backtracking tolerance, the backtracking is terminated.
In the Broyden method a new Jacobian will be calculated if the Jacobian is outdated. The
default value is 10−3.

cndtol The tolerance of the test for ill conditioning of the Jacobian or Broyden approximation.
If less than the machine precision it will be silently set to the machine precision. When the
estimated inverse condition of the (approximated) Jacobian matrix is less than or equal to the
value of cndtol the matrix is deemed to be ill-conditioned, in which case an error will be
reported if the allowSingular component is set to FALSE. The default value is 10−12.

sigma Reduction factor for the geometric line search. The default value is 0.5.
scalex a vector of scaling values for the parameters. The inverse of a scale value is an indication

of the size of a parameter. The default value is 1.0 for all scale values.
maxit The maximum number of major iterations. The default value is 150 if a global strategy

has been specified. If no global strategy has been specified the default is 20.
trace Non-negative integer. A value of 1 will give a detailed report of the progress of the itera-

tion. For a description see Iteration report.
chkjac A logical value indicating whether to check a user supplied Jacobian, if supplied. The

default value is FALSE. The first 10 errors are printed. The code for this check is derived from
the code in Bouaricha and Schnabel (1997).

6 nleqslv

delta Initial (scaled) trust region radius. A value of −1.0 or "cauchy" is replaced by the length
of the Cauchy step in the initial point. A value of −2.0 or "newton" is replaced by the length
of the Newton step in the initial point. Any numeric value less than or equal to 0 and not
equal to −2.0, will be replaced by −1.0; the algorithm will then start with the length of the
Cauchy step in the initial point. If it is numeric and positive it will be set to the smaller of
the value supplied or the maximum stepsize. If it is not numeric and not one of the permitted
character strings then an error message will be issued. The default is −2.0.

stepmax Maximum scaled stepsize. If this is negative then the maximum stepsize is set to the
largest positive representable number. The default is −1.0, so there is no default maximum
stepsize.

dsub Number of non zero subdiagonals of a banded Jacobian. The default is to assume that the
Jacobian is not banded. Must be specified if dsuper has been specified and must be larger
than zero when dsuper is zero.

dsuper Number of non zero super diagonals of a banded Jacobian. The default is to assume that
the Jacobian is not banded. Must be specified if dsub has been specified and must be larger
than zero when dsub is zero.

allowSingular A logical value indicating if a small correction to the Jacobian when it is singular
or too ill-conditioned is allowed. If the correction is less than 100*.Machine$double.eps
the correction cannot be applied and an unusable Jacobian will be reported. The method
used is similar to a Levenberg-Marquardt correction and is explained in Dennis and Schnabel
(1996) on page 151. It may be necessary to choose a higher value for cndtol to enforce the
correction. The default value is FALSE.

Value

A list containing components

x final values for x

fvec function values

termcd termination code as integer. The values returned are

1 Function criterion is near zero. Convergence of function values has been
achieved.

2 x-values within tolerance. This means that the relative distance between two
consecutive x-values is smaller than xtol but that the function value crite-
rion is still larger than ftol. Function values may not be near zero; there-
fore the user must check if function values are acceptably small.

3 No better point found. This means that the algorithm has stalled and cannot
find an acceptable new point. This may or may not indicate acceptably
small function values.

4 Iteration limit maxit exceeded.
5 Jacobian is too ill-conditioned.
6 Jacobian is singular.
7 Jacobian is unusable.
-10 User supplied Jacobian is most likely incorrect.

message a string describing the termination code

nleqslv 7

scalex a vector containing the scaling factors, which will be the final values when au-
tomatic scaling was selected

njcnt number of Jacobian evaluations

nfcnt number of function evaluations, excluding those required for calculating a Jaco-
bian and excluding the initial function evaluation (at iteration 0)

iter number of outer iterations used by the algorithm. This excludes the initial itera-
tion. The number of backtracks can be calculated as the difference between the
nfcnt and iter components.

jac the final Jacobian or the Broyden approximation if jacobian was set to TRUE.
If no iterations were executed, as may happen when the initial guess are suffi-
ciently close the solution, there is no Broyden approximation and the returned
matrix will always be the actual Jacobian. If the matrix is singular or too ill-
conditioned the returned matrix is of no value.

Warning

You cannot use this function recursively. Thus function fn should not in its turn call nleqslv.

References

Bouaricha, A. and Schnabel, R.B. (1997), Algorithm 768: TENSOLVE: A Software Package
for Solving Systems of Nonlinear Equations and Nonlinear Least-squares Problems Using Tensor
Methods, Transactions on Mathematical Software, 23, 2, pp. 174–195.

Dennis, J.E. Jr and Schnabel, R.B. (1996), Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Siam.

Moré, J.J. (1978), The Levenberg-Marquardt Algorithm, Implementation and Theory, In Numerical
Analysis, G.A. Watson (Ed.), Lecture Notes in Mathematics 630, Springer-Verlag, pp. 105–116.

Golub, G.H and C.F. Van Loan (1996), Matrix Computations (3rd edition), The John Hopkins
University Press.

Higham, N.J. (2002), Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, pp. 10–11.

Nocedal, J. and Wright, S.J. (2006), Numerical Optimization, Springer.

Powell, M.J.D. (1970), A hybrid method for nonlinear algebraic equations, In Numerical Methods
for Nonlinear Algebraic Equations, P. Rabinowitz (Ed.), Gordon & Breach.

Powell, M.J.D. (1970), A Fortran subroutine for solving systems nonlinear equations, In Numerical
Methods for Nonlinear Algebraic Equations, P. Rabinowitz (Ed.), Gordon & Breach.

Reichel, L. and W.B. Gragg (1990), Algorithm 686: FORTRAN subroutines for updating the QR
decomposition, ACM Trans. Math. Softw., 16, 4, pp. 369–377.

See Also

If this function cannot solve the supplied function then it is a good idea to try the function testnslv
in this package. For detecting multiple solutions see searchZeros.

8 nleqslv

Examples

Dennis Schnabel example 6.5.1 page 149
dslnex <- function(x) {

y <- numeric(2)
y[1] <- x[1]^2 + x[2]^2 - 2
y[2] <- exp(x[1]-1) + x[2]^3 - 2
y

}

jacdsln <- function(x) {
n <- length(x)
Df <- matrix(numeric(n*n),n,n)
Df[1,1] <- 2*x[1]
Df[1,2] <- 2*x[2]
Df[2,1] <- exp(x[1]-1)
Df[2,2] <- 3*x[2]^2

Df
}

BADjacdsln <- function(x) {
n <- length(x)
Df <- matrix(numeric(n*n),n,n)
Df[1,1] <- 4*x[1]
Df[1,2] <- 2*x[2]
Df[2,1] <- exp(x[1]-1)
Df[2,2] <- 5*x[2]^2

Df
}

xstart <- c(2,0.5)
fstart <- dslnex(xstart)
xstart
fstart

a solution is c(1,1)

nleqslv(xstart, dslnex, control=list(btol=.01))

Cauchy start
nleqslv(xstart, dslnex, control=list(trace=1,btol=.01,delta="cauchy"))

Newton start
nleqslv(xstart, dslnex, control=list(trace=1,btol=.01,delta="newton"))

final Broyden approximation of Jacobian (quite good)
z <- nleqslv(xstart, dslnex, jacobian=TRUE,control=list(btol=.01))
z$x
z$jac
jacdsln(z$x)

nleqslv-iterationreport 9

different initial start; not a very good final approximation
xstart <- c(0.5,2)
z <- nleqslv(xstart, dslnex, jacobian=TRUE,control=list(btol=.01))
z$x
z$jac
jacdsln(z$x)

Not run:
no global strategy but limit stepsize
but look carefully: a different solution is found
nleqslv(xstart, dslnex, method="Newton", global="none", control=list(trace=1,stepmax=5))

but if the stepsize is limited even more the c(1,1) solution is found
nleqslv(xstart, dslnex, method="Newton", global="none", control=list(trace=1,stepmax=2))

Broyden also finds the c(1,1) solution when the stepsize is limited
nleqslv(xstart, dslnex, jacdsln, method="Broyden", global="none", control=list(trace=1,stepmax=2))

End(Not run)

example with a singular jacobian in the initial guess
f <- function(x) {

y <- numeric(3)
y[1] <- x[1] + x[2] - x[1]*x[2] - 2
y[2] <- x[1] + x[3] - x[1]*x[3] - 3
y[3] <- x[2] + x[3] - 4
return(y)

}

Jac <- function(x) {
J <- matrix(0,nrow=3,ncol=3)
J[,1] <- c(1-x[2],1-x[3],0)
J[,2] <- c(1-x[1],0,1)
J[,3] <- c(0,1-x[1],1)
J

}

exact solution
xsol <- c(-.5, 5/3 , 7/3)
xsol

xstart <- c(1,2,3)
J <- Jac(xstart)
J
rcond(J)

z <- nleqslv(xstart,f,Jac, method="Newton",control=list(trace=1,allowSingular=TRUE))
all.equal(z$x,xsol)

10 nleqslv-iterationreport

nleqslv-iterationreport

Detailed iteration report of nleqslv

Description

The format of the iteration report provided by nleqslv when the trace component of the control
argument has been set to 1.

Details

All iteration reports consist of a series of columns with a header summarising the contents. Common
column headers are

Iter Iteration counter

Jac Jacobian type. The Jacobian type is indicated by N for a Newton Jacobian or B for a Broyden
updated matrix; optionally followed by the letter s indicating a totally singular matrix or the
letter i indicating an ill-conditioned matrix. Unless the Jacobian is singular, the Jacobian type
is followed by an estimate of the inverse condition number of the Jacobian in parentheses as
computed by Lapack. This column will be blank when backtracking is active.

Fnorm square of the euclidean norm of function values / 2

Largest |f| infinity norm of f(x) at the current point

Report for linesearch methods

A sample iteration report for the linesearch global methods (cline, qline and gline) is (some
intercolumn space has been removed to make the table fit)

Iter Jac Lambda Ftarg Fnorm Largest |f|
0 2.886812e+00 2.250000e+00
1 N(9.6e-03) 1.0000 2.886235e+00 5.787362e+05 1.070841e+03
1 0.1000 2.886754e+00 9.857947e+00 3.214799e+00
1 0.0100 2.886806e+00 2.866321e+00 2.237878e+00
2 B(2.2e-02) 1.0000 2.865748e+00 4.541965e+03 9.341610e+01
2 0.1000 2.866264e+00 3.253536e+00 2.242344e+00
2 0.0298 2.866304e+00 2.805872e+00 2.200544e+00
3 B(5.5e-02) 1.0000 2.805311e+00 2.919089e+01 7.073082e+00
3 0.1000 2.805816e+00 2.437606e+00 2.027297e+00
4 B(1.0e-01) 1.0000 2.437118e+00 9.839802e-01 1.142529e+00

The column headed by Lambda shows the value of the line search parameter. The column headed
by Ftarg follows from a sufficient decrease requirement and is the value below which Fnorm must
drop if the current step is to be accepted.

The value of Lambda may not be lower than a threshold determined by the setting of control pa-
rameter xtol to avoid reporting false convergence. When no acceptable Lambda is possible and the
Broyden method is being used, a new Jacobian will be computed.

nleqslv-iterationreport 11

Report for the pure method

The iteration report for the global method none is almost the same as the above report, except that
the column labelled Ftarg is omitted. The column Lambda gives the ratio of the maximum stepsize
and the length of the full Newton step. It is either exactly 1.0, indicating that the Newton step is
smaller than the maximum stepsize and therefore used unmodified, or smaller than 1.0, indicating
that the Newton step is larger than the maximum stepsize and therefore truncated.

Report for the double dogleg global method

A sample iteration report for the global method dbldog is (some intercolumn space has been re-
moved to make the table fit)

Iter Jac Lambda Eta Dlt0 Dltn Fnorm Largest |f|
0 2.886812e+00 2.250000e+00
1 N(9.6e-03) C 0.9544 0.4671 0.9343* 1.699715e-01 5.421673e-01
1 W 0.0833 0.9544 0.9343 0.4671 1.699715e-01 5.421673e-01
2 B(1.1e-02) W 0.1154 0.4851 0.4671 0.4671 1.277667e-01 5.043571e-01
3 B(7.3e-02) W 0.7879 0.7289 0.4671 0.0759 5.067893e-01 7.973542e-01
3 C 0.7289 0.0759 0.1519 5.440250e-02 2.726084e-01
4 B(8.3e-02) W 0.5307 0.3271 0.1519 0.3037 3.576547e-02 2.657553e-01
5 B(1.8e-01) N 0.6674 0.2191 0.4383 6.566182e-03 8.555110e-02
6 B(1.8e-01) N 0.9801 0.0376 0.0752 4.921645e-04 3.094104e-02
7 B(1.9e-01) N 0.7981 0.0157 0.0313 4.960629e-06 2.826064e-03
8 B(1.6e-01) N 0.3942 0.0029 0.0058 1.545503e-08 1.757498e-04
9 B(1.5e-01) N 0.6536 0.0001 0.0003 2.968676e-11 5.983765e-06
10 B(1.5e-01) N 0.4730 0.0000 0.0000 4.741792e-14 2.198380e-07
11 B(1.5e-01) N 0.9787 0.0000 0.0000 6.451792e-19 8.118586e-10

After the column for the Jacobian the letters indicate the following

C a fraction (≤ 1.0) of the Cauchy or steepest descent step is taken where the fraction is the ratio
of the trust region radius and the Cauchy steplength.

W a convex combination of the Cauchy and eta*(Newton step) is taken. The number in the column
headed by Lambda is the weight of the partial Newton step.

P a fraction (≥ 1.0) of the partial Newton step, equal to eta*(Newton step), is taken where the
fraction is the ratio of the trust region radius and the partial Newton steplength.

N a normal full Newton step is taken.

The number in the column headed by Eta is calculated from an upper limit on the ratio of the length
of the steepest descent direction and the length of the Newton step. See Dennis and Schnabel (1996)
pp.139ff for the details. The column headed by Dlt0 gives the trust region size at the start of the
current iteration. The column headed by Dltn gives the trust region size when the current step has
been accepted by the dogleg algorithm.

The trust region size is decreased when the actual reduction of the function value norm does not
agree well with the predicted reduction from the linear approximation of the function or does not
exhibit sufficient decrease. And increased when the actual and predicted reduction are sufficiently
close. The trust region size is not allowed to decrease beyond a threshold determined by the set-
ting of control parameter xtol; when that happens the backtracking is regarded as a failure and is
terminated. In that case a new Jacobian will be calculated if the Broyden method is being used.

12 nleqslv-iterationreport

The current trust region step is continued with a doubled trust region size when the actual and
predicted reduction agree extremely well. This is indicated by * immediately following the value
in the column headed by Dltn. This could save gradient calculations. However, a trial step is never
taken if the current step is a Newton step. If the trial step does not succeed then the previous trust
region size is restored by halving the trial size. The exception is when a trial step takes a Newton
step. In that case the trust region size is immediately set to the size of the Newton step which implies
that a halving of the new size leads to a smaller size for the trust region than before.

Normally the initial trust region radius is the same as the final trust region radius of the previous
iteration but the trust region size is restricted by the size of the current Newton step. So when full
Newton steps are being taken, the trust region radius at the start of an iteration may be less than
the final value of the previous iteration. The double dogleg method and the trust region updating
procedure are fully explained in sections 6.4.2 and 6.4.3 of Dennis and Schnabel (1996).

Report for the single (Powell) dogleg global method

A sample iteration report for the global method pwldog is (some intercolumn space has been re-
moved to make the table fit)

Iter Jac Lambda Dlt0 Dltn Fnorm Largest |f|
0 2.886812e+00 2.250000e+00
1 N(9.6e-03) C 0.4671 0.9343* 1.699715e-01 5.421673e-01
1 W 0.0794 0.9343 0.4671 1.699715e-01 5.421673e-01
2 B(1.1e-02) W 0.0559 0.4671 0.4671 1.205661e-01 4.890487e-01
3 B(7.3e-02) W 0.5662 0.4671 0.0960 4.119560e-01 7.254441e-01
3 W 0.0237 0.0960 0.1921 4.426507e-02 2.139252e-01
4 B(8.8e-02) W 0.2306 0.1921 0.3842* 2.303135e-02 2.143943e-01
4 W 0.4769 0.3842 0.1921 2.303135e-02 2.143943e-01
5 B(1.9e-01) N 0.1375 0.2750 8.014508e-04 3.681498e-02
6 B(1.7e-01) N 0.0162 0.0325 1.355741e-05 5.084627e-03
7 B(1.3e-01) N 0.0070 0.0035 1.282776e-05 4.920962e-03
8 B(1.8e-01) N 0.0028 0.0056 3.678140e-08 2.643592e-04
9 B(1.9e-01) N 0.0001 0.0003 1.689182e-12 1.747622e-06
10 B(1.9e-01) N 0.0000 0.0000 9.568768e-16 4.288618e-08
11 B(1.9e-01) N 0.0000 0.0000 1.051357e-18 1.422036e-09

This is much simpler than the double dogleg report, since the single dogleg takes either a steepest
descent step, a convex combination of the steepest descent and Newton steps or a full Newton step.
The number in the column Lambda is the weight of the Newton step. The single dogleg method is a
special case of the double dogleg method with eta equal to 1. It uses the same method of updating
the trust region size as the double dogleg method.

Report for the hook step global method

A sample iteration report for the global method hook is (some intercolumn space has been removed
to make the table fit)

Iter Jac mu dnorm Dlt0 Dltn Fnorm Largest |f|
0 2.886812e+00 2.250000e+00
1 N(9.6e-03) H 0.1968 0.4909 0.4671 0.9343* 1.806293e-01 5.749418e-01

print.test.nleqslv 13

1 H 0.0366 0.9381 0.9343 0.4671 1.806293e-01 5.749418e-01
2 B(2.5e-02) H 0.1101 0.4745 0.4671 0.2336 1.797759e-01 5.635028e-01
3 B(1.4e-01) H 0.0264 0.2341 0.2336 0.4671 3.768809e-02 2.063234e-01
4 B(1.6e-01) N 0.0819 0.0819 0.1637 3.002274e-03 7.736213e-02
5 B(1.8e-01) N 0.0513 0.0513 0.1025 5.355533e-05 1.018879e-02
6 B(1.5e-01) N 0.0090 0.0090 0.0179 1.357039e-06 1.224357e-03
7 B(1.5e-01) N 0.0004 0.0004 0.0008 1.846111e-09 6.070166e-05
8 B(1.4e-01) N 0.0000 0.0000 0.0001 3.292896e-12 2.555851e-06
9 B(1.5e-01) N 0.0000 0.0000 0.0000 7.281583e-18 3.800552e-09

The column headed by mu shows the Levenberg-Marquardt parameter when the Newton step is
larger than the trust region radius. The column headed by dnorm gives the Euclidean norm of the
step (adjustment of the current x) taken by the algorithm. The absolute value of the difference with
Dlt0 is less than 0.1 times the trust region radius.

After the column for the Jacobian the letters indicate the following

H a Levenberg-Marquardt restricted step is taken.

N a normal full Newton step is taken.

The meaning of the columns headed by Dlt0 and Dltn is identical to that of the same columns for
the double dogleg method. The method of updating the trust region size is the same as in the double
dogleg method.

See Also

nleqslv

print.test.nleqslv Printing the result of testnslv

Description

Print method for test.nleqslv objects.

Usage

S3 method for class 'test.nleqslv'
print(x, digits=4, width.cutoff=45L, ...)

Arguments

x a test.nleqslv object

digits specifies the minimum number of significant digits to be printed in values.

width.cutoff integer passed to deparse which sets the cutoff at which line-breaking is tried.

... additional arguments to print.

14 searchZeros

Details

This is the print method for objects inheriting from class test.nleqslv. It prints the call to
testnslv followed by the description of the experiment (if the title argument was specified in
the call to testnslv) and the dataframe containing the results of testnslv.

Value

It returns the object x invisibly.

Examples

dslnex <- function(x) {
y <- numeric(2)
y[1] <- x[1]^2 + x[2]^2 - 2
y[2] <- exp(x[1]-1) + x[2]^3 - 2
y

}
xstart <- c(1.5,0.5)
fstart <- dslnex(xstart)
z <- testnslv(xstart,dslnex)
print(z)

searchZeros Solve a nonlinear equation system with multiple roots from multiple
initial estimates

Description

This function solves a system of nonlinear equations with nleqlsv for multiple initial estimates of
the roots.

Usage

searchZeros(x, fn, digits=4, ...)

Arguments

x A matrix with each row containing an initial guess of the roots.

fn A function of x returning a vector of function values with the same length as the
vector x.

digits integer passed to round for locating and removing duplicate rounded solutions.

... Further arguments to be passed to nleqslv, fn and jac.

searchZeros 15

Details

Each row of x is a vector of initial estimates for the argument x of nleqslv. The function runs
nleqslv for each row of the matrix x. The first initial value is treated separately and slightly
differently from the other initial estimates. It is used to check if all arguments in ... are valid
arguments for nleqslv and the function to be solved. This is done by running nleqslv with no
condition handling. If an error is then detected an error message is issued and the function stops.
For the remaining initial estimates nleqslv is executed silently. Only solutions for which the
nleqslv termination code tcode equals 1 are regarded as valid solutions. The rounded solutions
(after removal of duplicates) are used to order the solutions in increasing order. These rounded
solutions are not included in the return value of the function.

Value

If no solutions are found NULL is returned. Otherwise a list containing the following components is
returned

x a matrix with each row containing a unique solution (unrounded)

xfnorm a vector of the function criterion associated with each row of the solution matrix x.

fnorm a vector containing the function criterion for every converged result

idxcvg a vector containing the row indices of the matrix of initial estimates for which function
value convergence was achieved

idxxtol a vector containing the row indices of the matrix of initial estimates for which x-value
convergence was achieved

idxnocvg a vector containing the row indices of the matrix of initial estimates which lead to an
nleqslv termination code > 2

idxfatal a vector containing the row indices of the matrix of initial estimates for which a fatal
error occurred that made nleqslv stop

xstart a matrix of the initial estimates corresponding to the solution matrix

cvgstart a matrix of all initial estimates for which convergence was achieved

Examples

Dennis Schnabel example 6.5.1 page 149 (two solutions)
set.seed(123)
dslnex <- function(x) {

y <- numeric(2)
y[1] <- x[1]^2 + x[2]^2 - 2
y[2] <- exp(x[1]-1) + x[2]^3 - 2
y

}
xstart <- matrix(runif(50, min=-2, max=2),ncol=2)
ans <- searchZeros(xstart,dslnex, method="Broyden",global="dbldog")
ans

more complicated example
R. Baker Kearfott, Some tests of Generalized Bisection,
ACM Transactions on Methematical Software, Vol. 13, No. 3, 1987, pp 197-220

16 testnslv

A high-degree polynomial system (section 4.3 Problem 12)
There are 12 real roots (and 126 complex roots to this system!)

hdp <- function(x) {
f <- numeric(length(x))
f[1] <- 5 * x[1]^9 - 6 * x[1]^5 * x[2]^2 + x[1] * x[2]^4 + 2 * x[1] * x[3]
f[2] <- -2 * x[1]^6 * x[2] + 2 * x[1]^2 * x[2]^3 + 2 * x[2] * x[3]
f[3] <- x[1]^2 + x[2]^2 - 0.265625
f

}

N <- 40 # at least to find all 12 roots
set.seed(123)
xstart <- matrix(runif(3*N,min=-1,max=1), N, 3) # N initial guesses, each of length 3
ans <- searchZeros(xstart,hdp, method="Broyden",global="dbldog")
ans$x

testnslv Test different methods for solving with nleqslv

Description

The function tests different methods and global strategies for solving a system of nonlinear equa-
tions with nleqslv

Usage

testnslv(x, fn, jac=NULL, ...,
method = c("Newton", "Broyden"),

global = c("cline", "qline", "gline", "pwldog", "dbldog", "hook", "none"),
Nrep=0L, title=NULL

)

Arguments

x A numeric vector with an initial guess of the root.
fn A function of x returning the function values.
jac A function to return the Jacobian for the fn function. For a vector valued func-

tion fn the Jacobian must be a numeric matrix of the correct dimensions. For a
scalar valued function fn the jac function may return a scalar. If not supplied
numerical derivatives will be used.

... Further arguments to be passed to fn and jac and nleqslv.
method The methods to use for finding a solution.
global The global strategies to test. The argument may consist of several possibly ab-

breviated items.
Nrep Number of repetitions to apply. Default is no repetitions.
title a description of this experiment.

testnslv 17

Details

The function solves the function fn with nleqslv for the specified methods and global strategies.
When argument Nrep has been set to a number greater than or equal to 1, repetitions of the solving
process are performed and the used CPU time in seconds is recorded.

If checking a user supplied jacobian is enabled, then testnslv will stop immediately when a pos-
sibly incorrect jacobian is detected.

Value

testnslv returns an object of class "test.nleqslv" which is a list containing the following ele-
ments

call the matched call

out a dataframe containing the results with the following columns

Method method used.
Global global strategy used.
termcd termination code of nleqslv.
Fcnt number of function evaluations used by the method and global strategy. This excludes

function evaluations made when computing a numerical Jacobian.
Jcnt number of Jacobian evaluations.
Iter number of outer iterations used by the algorithm.
Message a string describing the termination code in an abbreviated form.
Fnorm square of the euclidean norm of the vector of function results divided by 2.
cpusecs CPU seconds used by the requested number of repetitions (only present when argu-

ment Nrep is not 0).

title the description if specified

The abbreviated strings are

Fcrit Convergence of function values has been achieved.

Xcrit This means that the relative distance between two consecutive x-values is smaller than xtol.

Stalled The algorithm cannot find an acceptable new point.

Maxiter Iteration limit maxit exceeded.

Illcond Jacobian is too ill-conditioned.

Singular Jacobian is singular.

BadJac Jacobian is unusable.

ERROR nleqslv stopped because of a fatal error.

Warning

Any nleqslv error message will be displayed immediately and an error for the particular combina-
tion of method and global strategy will be recorded in the final dataframe.

18 testnslv

Examples

dslnex <- function(x) {
y <- numeric(2)
y[1] <- x[1]^2 + x[2]^2 - 2
y[2] <- exp(x[1]-1) + x[2]^3 - 2
y

}
xstart <- c(0.5,0.5)
fstart <- dslnex(xstart)
testnslv(xstart,dslnex)
this will encounter an error
xstart <- c(2.0,0.5)
fstart <- dslnex(xstart)
testnslv(xstart,dslnex)

Index

∗ nonlinear
nleqslv, 3
searchZeros, 14
testnslv, 16

∗ optimize
nleqslv, 3
searchZeros, 14
testnslv, 16

∗ package
nleqslv-package, 2

∗ print
print.test.nleqslv, 13

deparse, 13

Iteration report
(nleqslv-iterationreport), 10

nleqslv, 3, 13, 14, 16, 17
nleqslv-iterationreport, 9
nleqslv-package, 2
nleqslv.Intro (nleqslv-package), 2

print (print.test.nleqslv), 13
print.test.nleqslv, 13

round, 14

searchZeros, 7, 14

testnslv, 7, 16

19

	nleqslv-package
	nleqslv
	nleqslv-iterationreport
	print.test.nleqslv
	searchZeros
	testnslv
	Index

