Package: PrInDT 1.0.1
Claus Weihs
PrInDT: Prediction and Interpretation in Decision Trees for Classification and Regression
Optimization of conditional inference trees from the package 'party' for classification and regression. For optimization, the model space is searched for the best tree on the full sample by means of repeated subsampling. Restrictions are allowed so that only trees are accepted which do not include pre-specified uninterpretable split results (cf. Weihs & Buschfeld, 2021a). The function PrInDT() represents the basic resampling loop for 2-class classification (cf. Weihs & Buschfeld, 2021a). The function RePrInDT() (repeated PrInDT()) allows for repeated applications of PrInDT() for different percentages of the observations of the large and the small classes (cf. Weihs & Buschfeld, 2021c). The function NesPrInDT() (nested PrInDT()) allows for an extra layer of subsampling for a specific factor variable (cf. Weihs & Buschfeld, 2021b). The functions PrInDTMulev() and PrInDTMulab() deal with multilevel and multilabel classification. In addition to these PrInDT() variants for classification, the function PrInDTreg() has been developed for regression problems. Finally, the function PostPrInDT() allows for a posterior analysis of the distribution of a specified variable in the terminal nodes of a given tree. References are: -- Weihs, C., Buschfeld, S. (2021a) "Combining Prediction and Interpretation in Decision Trees (PrInDT) - a Linguistic Example" <arxiv:2103.02336>; -- Weihs, C., Buschfeld, S. (2021b) "NesPrInDT: Nested undersampling in PrInDT" <arxiv:2103.14931>; -- Weihs, C., Buschfeld, S. (2021c) "Repeated undersampling in PrInDT (RePrInDT): Variation in undersampling and prediction, and ranking of predictors in ensembles" <arxiv:2108.05129>.
Authors:
PrInDT_1.0.1.tar.gz
PrInDT_1.0.1.tar.gz(r-4.5-noble)PrInDT_1.0.1.tar.gz(r-4.4-noble)
PrInDT_1.0.1.tgz(r-4.4-emscripten)PrInDT_1.0.1.tgz(r-4.3-emscripten)
PrInDT.pdf |PrInDT.html✨
PrInDT/json (API)
# Install 'PrInDT' in R: |
install.packages('PrInDT', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- data_land - Landscape analysis
- data_speaker - Subject pronouns and a predictor with one very frequent level
- data_vowel - Vowel length
- data_zero - Subject pronouns
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:b8d713a112. Checks:OK: 1 NOTE: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 10 2024 |
R-4.5-linux | NOTE | Nov 10 2024 |
Exports:NesPrInDTPostPrInDTPrInDTPrInDTAllPrInDTAllpartsPrInDTMulabPrInDTMulabAllPrInDTMulevPrInDTMulevAllPrInDTregPrInDTregAllRePrInDT
Dependencies:clicodetoolscoindata.tablegluelatticelibcoinlifecyclemagrittrMASSMatrixmatrixStatsmodeltoolsmultcompmvtnormpartyrlangsandwichsplitstackshapestringistringrstrucchangesurvivalTH.datavctrszoo