Package: BeQut 0.1.0

Antoine Barbieri
BeQut: Bayesian Estimation for Quantile Regression Mixed Models
Using a Bayesian estimation procedure, this package fits linear quantile regression models such as linear quantile models, linear quantile mixed models, quantile regression joint models for time-to-event and longitudinal data. The estimation procedure is based on the asymmetric Laplace distribution and the 'JAGS' software is used to get posterior samples (Yang, Luo, DeSantis (2019) <doi:10.1177/0962280218784757>).
Authors:
BeQut_0.1.0.tar.gz
BeQut_0.1.0.tar.gz(r-4.5-noble)BeQut_0.1.0.tar.gz(r-4.4-noble)
BeQut_0.1.0.tgz(r-4.4-emscripten)BeQut_0.1.0.tgz(r-4.3-emscripten)
BeQut.pdf |BeQut.html✨
BeQut/json (API)
NEWS
# Install 'BeQut' in R: |
install.packages('BeQut', repos = 'https://cloud.r-project.org') |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:6248e03603. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 26 2025 |
R-4.5-linux | OK | Mar 26 2025 |
R-4.4-linux | OK | Mar 26 2025 |
Dependencies:codajagsUIlatticelqmmMASSMatrixnlmerjagsSparseGridsurvival
Citation
To cite package ‘BeQut’ in publications use:
Barbieri A, Jacqmin-Gadda H (2023). BeQut: Bayesian Estimation for Quantile Regression Mixed Models. R package version 0.1.0, https://CRAN.R-project.org/package=BeQut.
Corresponding BibTeX entry:
@Manual{, title = {BeQut: Bayesian Estimation for Quantile Regression Mixed Models}, author = {Antoine Barbieri and Hélène Jacqmin-Gadda}, year = {2023}, note = {R package version 0.1.0}, url = {https://CRAN.R-project.org/package=BeQut}, }
Readme and manuals
BeQut
BeQut is a R-package for Bayesian estimation of quantile regression mixed models. Based on the asymmetric Laplace distribution, it also allows to estimate joint models for longitudinal and time-to-event data, linear mixed effects models and simple linear models.
Yang, M., Luo, S., & DeSantis, S. (2019). Bayesian quantile regression joint models: Inference and dynamic predictions. Statistical Methods in Medical Research, 28(8), 2524–2537. https://doi.org/10.1177/0962280218784757
To try the current development version from github, use:
if (!requireNamespace("devtools", quietly = TRUE)) {
install.packages("devtools")}
devtools::install_github("AntoineBbi/BeQut")
Warning: BeQut package requires JAGS software (http://mcmc-jags.sourceforge.net/).