Package: FourWayHMM 1.0.0

Salvatore D. Tomarchio

FourWayHMM: Parsimonious Hidden Markov Models for Four-Way Data

Implements parsimonious hidden Markov models for four-way data via expectation- conditional maximization algorithm, as described in Tomarchio et al. (2020) <arxiv:2107.04330>. The matrix-variate normal distribution is used as emission distribution. For each hidden state, parsimony is reached via the eigen-decomposition of the covariance matrices of the emission distribution. This produces a family of 98 parsimonious hidden Markov models.

Authors:Salvatore D. Tomarchio [aut, cre], Antonio Punzo [aut], Antonello Maruotti [aut]

FourWayHMM_1.0.0.tar.gz
FourWayHMM_1.0.0.tar.gz(r-4.5-noble)FourWayHMM_1.0.0.tar.gz(r-4.4-noble)
FourWayHMM_1.0.0.tgz(r-4.4-emscripten)FourWayHMM_1.0.0.tgz(r-4.3-emscripten)
FourWayHMM.pdf |FourWayHMM.html
FourWayHMM/json (API)

# Install 'FourWayHMM' in R:
install.packages('FourWayHMM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • simX - Simulated Data

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 272 downloads 2 exports 30 dependencies

Last updated 3 years agofrom:f180b5bbd9. Checks:OK: 1 NOTE: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 12 2024
R-4.5-linuxNOTENov 12 2024

Exports:HMM.fitHMM.init

Dependencies:clicodetoolscpp11data.tabledoSNOWdplyrfansiforeachgenericsglueiteratorsLaplacesDemonlifecyclemagrittrmclustpillarpkgconfigpurrrR6rlangsnowstringistringrtensortibbletidyrtidyselectutf8vctrswithr