Package: FourWayHMM 1.0.0

Salvatore D. Tomarchio
FourWayHMM: Parsimonious Hidden Markov Models for Four-Way Data
Implements parsimonious hidden Markov models for four-way data via expectation- conditional maximization algorithm, as described in Tomarchio et al. (2020) <arxiv:2107.04330>. The matrix-variate normal distribution is used as emission distribution. For each hidden state, parsimony is reached via the eigen-decomposition of the covariance matrices of the emission distribution. This produces a family of 98 parsimonious hidden Markov models.
Authors:
FourWayHMM_1.0.0.tar.gz
FourWayHMM_1.0.0.tar.gz(r-4.5-noble)FourWayHMM_1.0.0.tar.gz(r-4.4-noble)
FourWayHMM_1.0.0.tgz(r-4.4-emscripten)FourWayHMM_1.0.0.tgz(r-4.3-emscripten)
FourWayHMM.pdf |FourWayHMM.html✨
FourWayHMM/json (API)
# Install 'FourWayHMM' in R: |
install.packages('FourWayHMM', repos = 'https://cloud.r-project.org') |
- simX - Simulated Data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:f180b5bbd9. Checks:1 OK, 2 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 12 2025 |
R-4.5-linux | NOTE | Mar 12 2025 |
R-4.4-linux | NOTE | Mar 12 2025 |
Dependencies:clicodetoolscpp11data.tabledoSNOWdplyrfansiforeachgenericsglueiteratorsLaplacesDemonlifecyclemagrittrmclustpillarpkgconfigpurrrR6rlangsnowstringistringrtensortibbletidyrtidyselectutf8vctrswithr
Citation
To cite package ‘FourWayHMM’ in publications use:
Tomarchio S, Punzo A, Maruotti A (2021). FourWayHMM: Parsimonious Hidden Markov Models for Four-Way Data. R package version 1.0.0, https://CRAN.R-project.org/package=FourWayHMM.
Corresponding BibTeX entry:
@Manual{, title = {FourWayHMM: Parsimonious Hidden Markov Models for Four-Way Data}, author = {Salvatore D. Tomarchio and Antonio Punzo and Antonello Maruotti}, year = {2021}, note = {R package version 1.0.0}, url = {https://CRAN.R-project.org/package=FourWayHMM}, }
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Fitting for parsimonious hidden Markov models for four-way data | HMM.fit |
Initialization for the ECM algorithm | HMM.init |
Simulated Data | simX |