Package: multiridge 1.11

Mark A. van de Wiel

multiridge: Fast Cross-Validation for Multi-Penalty Ridge Regression

Multi-penalty linear, logistic and cox ridge regression, including estimation of the penalty parameters by efficient (repeated) cross-validation and marginal likelihood maximization. Multiple high-dimensional data types that require penalization are allowed, as well as unpenalized variables. Paired and preferential data types can be specified. See Van de Wiel et al. (2021), <arxiv:2005.09301>.

Authors:Mark A. van de Wiel

multiridge_1.11.tar.gz
multiridge_1.11.tar.gz(r-4.5-noble)multiridge_1.11.tar.gz(r-4.4-noble)
multiridge_1.11.tgz(r-4.4-emscripten)multiridge_1.11.tgz(r-4.3-emscripten)
multiridge.pdf |multiridge.html
multiridge/json (API)

# Install 'multiridge' in R:
install.packages('multiridge', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.48 score 2 packages 2 scripts 151 downloads 20 exports 10 dependencies

Last updated 3 years agofrom:95dbb68884. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 18 2024
R-4.5-linuxOKDec 18 2024

Exports:augmentbetasoutcreateXblockscreateXXblocksCVfoldsCVscoredoubleCVfastCV2IWLSCoxridgeIWLSridgemgcv_lambdamlikCVoptLambdasoptLambdas_mgcvoptLambdas_mgcvWrapoptLambdasWrappredictIWLSScoringsetupParallelSigmaFromBlocks

Dependencies:latticeMatrixmgcvnlmeplyrpROCRcppsnowsnowfallsurvival