Package: multiridge 1.11

Mark A. van de Wiel

multiridge: Fast Cross-Validation for Multi-Penalty Ridge Regression

Multi-penalty linear, logistic and cox ridge regression, including estimation of the penalty parameters by efficient (repeated) cross-validation and marginal likelihood maximization. Multiple high-dimensional data types that require penalization are allowed, as well as unpenalized variables. Paired and preferential data types can be specified. See Van de Wiel et al. (2021), <arxiv:2005.09301>.

Authors:Mark A. van de Wiel

multiridge_1.11.tar.gz
multiridge_1.11.tar.gz(r-4.5-noble)multiridge_1.11.tar.gz(r-4.4-noble)
multiridge_1.11.tgz(r-4.4-emscripten)multiridge_1.11.tgz(r-4.3-emscripten)
multiridge.pdf |multiridge.html
multiridge/json (API)

# Install 'multiridge' in R:
install.packages('multiridge', repos = 'https://cloud.r-project.org')
Datasets:

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.48 score 2 packages 210 downloads 20 exports 10 dependencies

Last updated 3 years agofrom:95dbb68884. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 18 2025
R-4.5-linuxOKMar 18 2025
R-4.4-linuxOKMar 18 2025

Exports:augmentbetasoutcreateXblockscreateXXblocksCVfoldsCVscoredoubleCVfastCV2IWLSCoxridgeIWLSridgemgcv_lambdamlikCVoptLambdasoptLambdas_mgcvoptLambdas_mgcvWrapoptLambdasWrappredictIWLSScoringsetupParallelSigmaFromBlocks

Dependencies:latticeMatrixmgcvnlmeplyrpROCRcppsnowsnowfallsurvival

Citation

To cite package ‘multiridge’ in publications use:

van de Wiel MA (2022). multiridge: Fast Cross-Validation for Multi-Penalty Ridge Regression. R package version 1.11, https://CRAN.R-project.org/package=multiridge.

ATTENTION: This citation information has been auto-generated from the package DESCRIPTION file and may need manual editing, see ‘help("citation")’.

Corresponding BibTeX entry:

  @Manual{,
    title = {multiridge: Fast Cross-Validation for Multi-Penalty Ridge
      Regression},
    author = {Mark A. {van de Wiel}},
    year = {2022},
    note = {R package version 1.11},
    url = {https://CRAN.R-project.org/package=multiridge},
  }

Readme and manuals

multiridge

R package for multi-penalty ridge regression

library(devtools); install_github("markvdwiel/multiridge")

Demo script and data available from: https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Help Manual

Help pageTopics
Fast cross-validation for multi-penalty ridge regressionmultiridge-package multiridge
Augment data with zeros.augment
Coefficient estimates from (converged) IWLS fitbetasout
Create list of paired data blockscreateXblocks
Creates list of (unscaled) sample covariance matricescreateXXblocks
Creates (repeated) cross-validation foldsCVfolds
Cross-validated scoreCVscore
Contains R-object 'dataXXmirmeth'dataXXmirmeth
Double cross-validation for estimating performance of 'multiridge'doubleCV
Fast cross-validation per data blockfastCV2
Iterative weighted least squares algorithm for Cox ridge regression.IWLSCoxridge
Iterative weighted least squares algorithm for linear and logistic ridge regression.IWLSridge
Maximum marginal likelihood scoremgcv_lambda
Outer-loop cross-validation for estimating performance of marginal likelihood based 'multiridge'mlikCV
Find optimal ridge penalties.optLambdas
Find optimal ridge penalties with maximimum marginal likelihoodoptLambdas_mgcv
Find optimal ridge penalties with sequential optimization.optLambdas_mgcvWrap
Find optimal ridge penalties with sequential optimization.optLambdasWrap
Predictions from ridge fitspredictIWLS
Evaluate predictionsScoring
Setting up parallel computingsetupParallel
Create penalized sample cross-product matrixSigmaFromBlocks