
Package: multiridge (via r-universe)
August 20, 2024

Type Package

Title Fast Cross-Validation for Multi-Penalty Ridge Regression

Version 1.11

Date 2022-06-13

Author Mark A. van de Wiel

Maintainer Mark A. van de Wiel <mark.vdwiel@amsterdamumc.nl>

Depends R (>= 3.5.0), survival, pROC, methods, mgcv, snowfall

Description Multi-penalty linear, logistic and cox ridge regression,
including estimation of the penalty parameters by efficient
(repeated) cross-validation and marginal likelihood
maximization. Multiple high-dimensional data types that require
penalization are allowed, as well as unpenalized variables.
Paired and preferential data types can be specified. See Van de
Wiel et al. (2021), <arXiv:2005.09301>.

License GPL (>= 3)

NeedsCompilation no

Repository CRAN

Date/Publication 2022-06-13 15:10:05 UTC

Contents
multiridge-package . 2
augment . 5
betasout . 6
createXblocks . 7
createXXblocks . 8
CVfolds . 9
CVscore . 10
dataXXmirmeth . 11
doubleCV . 12
fastCV2 . 15
IWLSCoxridge . 16

1

https://arxiv.org/abs/2005.09301

2 multiridge-package

IWLSridge . 18
mgcv_lambda . 19
mlikCV . 20
optLambdas . 23
optLambdasWrap . 25
optLambdas_mgcv . 27
optLambdas_mgcvWrap . 29
predictIWLS . 30
Scoring . 31
setupParallel . 32
SigmaFromBlocks . 33

Index 35

multiridge-package Fast cross-validation for multi-penalty ridge regression

Description

The package implements multi-penalty linear, logistic and cox ridge regression, including estima-
tion of the penalty parameters by efficient (repeated) cross-validation or marginal likelihood max-
imization. It allows for multiple high-dimensional data types that require penalization, as well as
unpenalized variables. Moreover, it allows a paired penalty for paired data types, and preferential
data types can be specified.

Details

The DESCRIPTION file:

Package: multiridge
Type: Package
Title: Fast Cross-Validation for Multi-Penalty Ridge Regression
Version: 1.11
Date: 2022-06-13
Author: Mark A. van de Wiel
Maintainer: Mark A. van de Wiel <mark.vdwiel@amsterdamumc.nl>
Depends: R (>= 3.5.0), survival, pROC, methods, mgcv, snowfall
Description: Multi-penalty linear, logistic and cox ridge regression, including estimation of the penalty parameters by efficient (repeated) cross-validation and marginal likelihood maximization. Multiple high-dimensional data types that require penalization are allowed, as well as unpenalized variables. Paired and preferential data types can be specified. See Van de Wiel et al. (2021), <arXiv:2005.09301>.
License: GPL (>=3)

Index of help topics:

CVfolds Creates (repeated) cross-validation folds
CVscore Cross-validated score
IWLSCoxridge Iterative weighted least squares algorithm for

Cox ridge regression.
IWLSridge Iterative weighted least squares algorithm for

multiridge-package 3

linear and logistic ridge regression.
Scoring Evaluate predictions
SigmaFromBlocks Create penalized sample cross-product matrix
augment Augment data with zeros.
betasout Coefficient estimates from (converged) IWLS fit
createXXblocks Creates list of (unscaled) sample covariance

matrices
createXblocks Create list of paired data blocks
dataXXmirmeth Contains R-object 'dataXXmirmeth'
doubleCV Double cross-validation for estimating

performance of 'multiridge'
fastCV2 Fast cross-validation per data block
mgcv_lambda Maximum marginal likelihood score
mlikCV Outer-loop cross-validation for estimating

performance of marginal likelihood based
'multiridge'

multiridge-package Fast cross-validation for multi-penalty ridge
regression

optLambdas Find optimal ridge penalties.
optLambdasWrap Find optimal ridge penalties with sequential

optimization.
optLambdas_mgcv Find optimal ridge penalties with maximimum

marginal likelihood
optLambdas_mgcvWrap Find optimal ridge penalties with sequential

optimization.
predictIWLS Predictions from ridge fits
setupParallel Setting up parallel computing

betasout: Coefficient estimates from (converged) IWLS fit
createXXblocks: Creates list of (unscaled) sample covariance matrices
CVscore: Cross-validated score for given penalty parameters
dataXXmirmeth: Example data
doubleCV: Double cross-validation for estimating performance
fastCV2: Fast cross-validation per data block; no dependency
IWLSCoxridge: Iterative weighted least squares algorithm for Cox ridge regression
IWLSridge: Iterative weighted least squares algorithm for linear and logistic ridge regression
mlikCV: Cross-validation for estimating performance of marginal likelihood estimation
optLambdasWrap: Find optimal ridge penalties by cross-validation
optLambdas_mgcvWrap: Find optimal ridge penalties in terms of marginal likelihood
predictIWLS: Predictions from ridge fits
setupParallel: Setting up parallel computing
SigmaFromBlocks: Create penalized sample cross-product matrix

Author(s)

Mark A. van de Wiel (mark.vdwiel@amsterdamumc.nl)

4 multiridge-package

References

Mark A. van de Wiel, Mirrelijn van Nee, Armin Rauschenberger (2021). Fast cross-validation for
high-dimensional ridge regression. J Comp Graph Stat

See Also

A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Examples

data(dataXXmirmeth)
resp <- dataXXmirmeth[[1]]
XXmirmeth <- dataXXmirmeth[[2]]

Find initial lambdas: fast CV per data block separately.
cvperblock2 <- fastCV2(XXblocks=XXmirmeth,Y=resp,kfold=10,fixedfolds = TRUE)
lambdas <- cvperblock2$lambdas

Create (repeated) CV-splits of the data.
leftout <- CVfolds(Y=resp,kfold=10,nrepeat=3,fixedfolds = TRUE)

Compute cross-validated score for initial lambdas
CVscore(penalties=lambdas, XXblocks=XXmirmeth,Y=resp,folds=leftout,
score="loglik")

Optimizes cross-validate criterion (default: log-lik)
Increase the number of iterations for optimal results
jointlambdas <- optLambdasWrap(penaltiesinit=lambdas, XXblocks=XXmirmeth,Y=resp,
folds=leftout,score="loglik",save=T, maxItropt1=5, maxItropt2=5)

Alternatively: optimize by using marginal likelihood criterion
Not run:
jointlambdas2 <- optLambdas_mgcvWrap(penaltiesinit=lambdas, XXblocks=XXmirmeth,
Y=resp)

End(Not run)

Optimal lambdas
optlambdas <- jointlambdas$optpen

Prepare fitting for the optimal lambdas.
XXT <- SigmaFromBlocks(XXmirmeth,penalties=optlambdas)

Fit. fit$etas contains the n linear predictors
fit <- IWLSridge(XXT,Y=resp)

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

augment 5

augment Augment data with zeros.

Description

This function augments data with zeros to allow pairing of data on the same variables, but from
DIFFERENT samples

Usage

augment(Xdata1, Xdata2)

Arguments

Xdata1 Data frame or data matrix of dimension n_1 x p.
Xdata2 Data frame or data matrix of dimension n_2 x p

Details

Xdata1 and Xdata2 should have the same number of columns. These columns represent variables.
Augments both data matrices with zeros, such that the matrices can be paired using createXXblocks
on the output of this function.

Value

List

Xaug1 Augmented data matrix 1
Xaug2 Augmented data matrix 2

Examples

#Example
#Simulate
n1 <- 10
n2 <- 20
p <- 100
X1 <- matrix(rnorm(p*n1),nrow=n1)
X2 <- matrix(rnorm(p*n2),nrow=n2)

#check whether column dimension is correct
ncol(X1)==ncol(X2)

#create cross-product
Xaugm <- augment(X1,X2)

#check dimensions (should be (n1+n2) x p)
dim(Xaugm[[1]])
dim(Xaugm[[2]])

6 betasout

betasout Coefficient estimates from (converged) IWLS fit

Description

Extracts estimated regression coefficients from the final Iterative Weighted Least Squares fit, as
obtained from linear, logistic, or Cox ridge regression.

Usage

betasout(IWLSfit, Xblocks, X1=NULL, penalties, pairing = NULL)

Arguments

IWLSfit List object, see details

Xblocks List of data frames or matrices, representing b=1,...,B data blocks of dimen-
sions n x p_b.

X1 Matrix. Dimension n x p_0, p_0 < n, representing unpenalized covariates.

penalties Numerical vector.

pairing Numerical vector of length 3 or NULL.

Details

IWLSfit should be the output of either IWLSridge or IWLSCoxridge. Xblocks may be created by
createXblocks.

Value

List. Number of components equals number of components of Xblocks plus one, as the output
is augmented with an intercept estimate (first component, NULL if absent). Each component is a
numerical vector representing regression parameter estimates. Lengths of vectors match column
dimensions of Xblocks (nr of variables for given data type)

See Also

createXblocks. A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Examples

data(dataXXmirmeth)
resp <- dataXXmirmeth[[1]]
XXmirmeth <- dataXXmirmeth[[2]]
lambdas <- c(100,1000)

Prepare fitting for the specified penalties.
XXT <- SigmaFromBlocks(XXmirmeth,penalties=lambdas)

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

createXblocks 7

Fit. fit$etas contains the n linear predictors
fit <- IWLSridge(XXT,Y=resp)

Computation of the regression coefficients requires the original
(large!) nxp data sets, available from link above
Not run:
Xbl <- createXblocks(list(datamir,datameth))
betas <- betasout(fit, Xblocks=Xbl, penalties=lambdas)

End(Not run)

createXblocks Create list of paired data blocks

Description

Create list of paired data blocks

Usage

createXblocks(datablocks, which2pair = NULL)

Arguments

datablocks List of data frames or matrices representing b=1,...,B data blocks of dimen-
sions n x p_b.

which2pair Integer vector of size 2 (or NULL)

Details

Only use this function when you wish to pair two data blocks. If which2pair = NULL the output
matches the input. If not, the function adds a paired data block, pairing the two data blocks corre-
sponding to the elements of which2pair.

Value

List. Same length as datablocks when which2pair = NULL, or augmented with one paired data
block.

See Also

createXXblocks. A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Examples

n <- 43
p <- 100
fakeXbl <- createXblocks(list(X1 = matrix(rnorm(n*p),nrow=n),X2 = matrix(rnorm(n*p),nrow=n)))

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

8 createXXblocks

createXXblocks Creates list of (unscaled) sample covariance matrices

Description

Creates list of (unscaled) sample covariance matrices X_b %*% t(X_b) for data blocks b = 1,..., B.

Usage

createXXblocks(datablocks, datablocksnew = NULL, which2pair = NULL)

Arguments

datablocks List of data frames or matrices

datablocksnew List of data frames or matrices

which2pair Integer vector of size 2 (or NULL)

Details

The efficiency of multiridge for high-dimendional data relies largely on this function: all iterative
calculation are performed on the out put of this function, which contains B blocks of nxn matrices.
If which2pair != NULL, the function adds a paired covariance block, pairing the two data blocks
corresponding to the elements of which2pair. If predictions for new samples are desired, one also
needs to specify datablocksnew, which should have he exact same format as datablocks with
matching column dimension (number of variables).

Value

List. Same number of component as datablocks when which2pair = NULL, or augmented with
one paired data block. Dimension is nxn for all components.

See Also

createXblocks, which is required when parameter estimates are desired (not needed for predic-
tion). A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Examples

#Example
#Simulate
Xbl1 <- matrix(rnorm(1000),nrow=10)
Xbl2 <- matrix(rnorm(2000),nrow=10)

#check whether dimensions are correct
ncol(Xbl1)==nrow(Xbl2)

#create cross-product

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

CVfolds 9

XXbl <- createXXblocks(list(Xbl1,Xbl2))

#suppose penalties for two data types equal 5,10, respectively
Sigma <- SigmaFromBlocks(XXbl,c(5,10))

#check dimensions (should be n x n)
dim(Sigma)

CVfolds Creates (repeated) cross-validation folds

Description

Creates (repeated) cross-validation folds for samples

Usage

CVfolds(Y, model = NULL, balance = TRUE, kfold = 10, fixedfolds = TRUE, nrepeat = 1)

Arguments

Y Response vector: numeric, binary, factor or survival.
model Character. Any of c("linear", "logistic", "cox"). Is inferred from Y when

NULL.
balance Boolean. Should the splits be balanced in terms of response labels?
kfold Integer. Desired fold.
fixedfolds Boolean. Should fixed splits be used for reproducibility?
nrepeat Numeric. Number of repeats.

Details

Creates (repeated), possibly balanced, splits of the samples. Computing time will often largely
depend on on kfold*nrepeat, the number of training-test splits evaluated.

Value

List object with kfold*nrepeat elements containing the sample indices of the left-out samples per
split.

See Also

A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Examples

data(dataXXmirmeth)
resp <- dataXXmirmeth[[1]]
leftout <- CVfolds(Y=resp,kfold=10,nrepeat=3,fixedfolds = TRUE)

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

10 CVscore

CVscore Cross-validated score

Description

Cross-validated score for given penalty parameters.

Usage

CVscore(penalties, XXblocks, Y, X1 = NULL, pairing = NULL, folds, intercept =
ifelse(is(Y, "Surv"),FALSE, TRUE), frac1 = NULL, score = "loglik", model =
NULL, eps = 1e-07, maxItr = 100, trace = FALSE, printCV = TRUE, save = FALSE,
parallel = FALSE)

Arguments

penalties Numeric vector.

XXblocks List of nxn matrices. Usually output of createXXblocks.

Y Response vector: numeric, binary, factor or survival.

X1 Matrix. Dimension n x p_0, p_0 < n, representing unpenalized covariates

pairing Numerical vector of length 3 or NULL when pairs are absent. Represents the
indices (in XXblocks) of the two data blocks involved in pairing, plus the index
of the paired block.

folds List of integer vector. Usually output of CVfolds.

intercept Boolean. Should an intercept be included?

frac1 Scalar. Prior fraction of cases. Only relevant for model=" logistic".

score Character. See Details.

model Character. Any of c("linear", "logistic", "cox"). Is inferred from Y when
NULL.

eps Scalar. Numerical bound for IWLS convergence.

maxItr Integer. Maximum number of iterations used in IWLS.

trace Boolean. Should the output of the IWLS algorithm be traced?

printCV Boolean. Should the CV-score be printed on screen?

save Boolean. If TRUE appends the penalties and resulting CVscore to global vari-
able allscores

parallel Boolean. Should computation be done in parallel? If TRUE, requires to run
setupParallel first.

Details

See Scoring for details on score.

dataXXmirmeth 11

Value

Numeric, cross-validated prediction score for given penalties

See Also

doubleCV for double cross-validation, used for performance evaluation

Examples

data(dataXXmirmeth)
resp <- dataXXmirmeth[[1]]
XXmirmeth <- dataXXmirmeth[[2]]

Find initial lambdas: fast CV per data block separately.
cvperblock2 <- fastCV2(XXblocks=XXmirmeth,Y=resp,kfold=10,fixedfolds = TRUE)
lambdas <- cvperblock2$lambdas

Create training-test splits
leftout <- CVfolds(Y=resp,kfold=10,nrepeat=3,fixedfolds = TRUE)
CVscore(penalties=lambdas, XXblocks=XXmirmeth,Y=resp,folds=leftout,score="loglik")

dataXXmirmeth Contains R-object dataXXmirmeth

Description

This list object contains the binary response (control/case) and two data blocks corresponding to
miRNA and methylation data

Usage

data(dataXXmirmeth)

Format

The format is a list with two components: resp: numeric (0/1) [1:43]\ XXmirmeth: list with 2
components, each a matrix [1:43,1:43]\

Details

The object XXmirmeth is created by applying createXXblocks(list(datamir,datameth)), where
objects datamir and datameth are large data matrices stored in the mirmethdata.Rdata file, which
is available from the link below.

12 doubleCV

Source

Snoek, B. C. et al. (2019), Genome-wide microRNA analysis of HPV-positive self-samples yields
novel triage markers for early detection of cervical cancer, International Journal of Cancer 144(2),
372-379.

Verlaat, W. et al. (2018), Identification and validation of a 3-gene methylation classifier for hpv-
based cervical screening on self-samples, Clinical Cancer Research 24(14), 3456-3464.

References

Mark A. van de Wiel, Mirrelijn van Nee, Armin Rauschenberger (2021). Fast cross-validation for
multi-penalty high-dimensional ridge regression. J Comp Graph Stat

See Also

createXXblocks. Source data file is available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Examples

data(dataXXmirmeth)
resp <- dataXXmirmeth[[1]]
XXmirmeth <- dataXXmirmeth[[2]]

doubleCV Double cross-validation for estimating performance of multiridge

Description

Double cross-validation for estimating performance of multiridge. Outer fold is for testing, inner
fold for penalty parameter tuning

Usage

doubleCV(penaltiesinit, XXblocks, Y, X1 = NULL, pairing = NULL, outfold = 5,
infold = 10, nrepeatout = 1, nrepeatin = 1, balance = TRUE, fixedfolds =
TRUE, intercept = ifelse(is(Y, "Surv"), FALSE, TRUE), frac1 = NULL,
score = "loglik",model = NULL, eps = 1e-07, maxItr = 10, trace = FALSE,
printCV = TRUE, reltol = 1e-04, optmethod1 = "SANN", optmethod2 =
ifelse(length(penaltiesinit) == 1, "Brent", "Nelder-Mead"), maxItropt1 = 10,
maxItropt2 = 25, save = FALSE, parallel = FALSE, pref = NULL, fixedpen = NULL)

Arguments

penaltiesinit Numeric vector. Initial values for penaltyparameters. May be obtained from
fastCV2.

XXblocks List of nxn matrices. Usually output of createXXblocks.

Y Response vector: numeric, binary, factor or survival.

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

doubleCV 13

X1 Matrix. Dimension n x p_0, p_0 < n, representing unpenalized covariates

pairing Numerical vector of length 3 or NULL when pairs are absent. Represents the
indices (in XXblocks) of the two data blocks involved in pairing, plus the index
of the paired block.

outfold Integer. Outer fold for test samples.

infold Integer. Inner fold for tuning penalty parameters.

nrepeatout Integer. Number of repeated splits for outer fold.

nrepeatin Integer. Number of repeated splits for inner fold.

balance Boolean. Should the splits be balanced in terms of response labels?

fixedfolds Boolean. Should fixed splits be used for reproducibility?

intercept Boolean. Should an intercept be included?

frac1 Scalar. Prior fraction of cases. Only relevant for model=" logistic".

score Character. See Details.

model Character. Any of c("linear", "logistic", "cox"). Is inferred from Y when
NULL.

eps Scalar. Numerical bound for IWLS convergence.

maxItr Integer. Maximum number of iterations used in IWLS.

trace Boolean. Should the output of the IWLS algorithm be traced?

printCV Boolean. Should the CV-score be printed on screen?

reltol Scalar. Relative tolerance for optimization methods.

optmethod1 Character. First, global search method. Any of the methods c("Brent", "Nelder-Mead",
"Sann") may be used, but simulated annealing by "Sann" is recommended to
search a wide landscape. Other unconstrained methods offered by optim may
also be used, but have not been tested.

optmethod2 Character. Second, local search method. Any of the methods c("Brent",
"Nelder-Mead", "Sann") may be used, but "Nelder-Mead" is generally rec-
ommended. Other unconstrained methods offered by optim may also be used,
but have not been tested.

maxItropt1 Integer. Maximum number of iterations for optmethod1.

maxItropt2 Integer. Maximum number of iterations for optmethod2.

save Boolean. If TRUE appends the penalties and resulting CVscore to global vari-
able allscores

parallel Boolean. Should computation be done in parallel? If TRUE, requires to run
setupParallel first.

pref Integer vector or NULL. Contains indices of data types in XXblocks that are pref-
erential.

fixedpen Integer vector or NULL. Contains indices of data types of which penalty is fixed
to the corresponding value in penaltiesinit.

14 doubleCV

Details

WARNING: this function may be very time-consuming. The number of evaluations may equal
nrepeatout*outerfold*nrepeatin*innerfold*maxItr*(maxItropt1+maxItropt2). Comput-
ing time may be estimated by multiplying computing time of optLambdasWrap by nrepeatout*outerfold.
See Scoring for details on score.

Value

List with the following components:

sampleindex Numerical vector: sample indices

true True responses

linpred Cross-validated linear predictors

See Also

optLambdas, optLambdasWrap which optimize the penalties. Scoring which may applied to output
of this function to obtain overall cross-validated performance score. A full demo and data are
available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Examples

data(dataXXmirmeth)
resp <- dataXXmirmeth[[1]]
XXmirmeth <- dataXXmirmeth[[2]]

Find initial lambdas: fast CV per data block separately.
cvperblock2 <- fastCV2(XXblocks=XXmirmeth,Y=resp,kfold=10,fixedfolds = TRUE)
lambdas <- cvperblock2$lambdas

Double cross-validation
Not run:
perf <- doubleCV(penaltiesinit=lambdas,XXblocks=XXmirmeth,Y=resp,
score="loglik",outfold=10, infold=10, nrepeatout=1, nrepeatin=3, parallel=TRUE)

Performance metrics
Scoring(perf$linpred,perf$true,score="auc",print=TRUE)
Scoring(perf$linpred,perf$true,score="brier",print=TRUE)
Scoring(perf$linpred,perf$true,score="loglik",print=TRUE)

End(Not run)

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

fastCV2 15

fastCV2 Fast cross-validation per data block

Description

Fast cross-validation for high-dimensional data. Finds optimal penalties separately per data block.
Useful for initialization.

Usage

fastCV2(XXblocks, Y, X1 = NULL, kfold = 10, intercept =
ifelse(is(Y, "Surv"), FALSE, TRUE), parallel = FALSE, fixedfolds = TRUE,
model = NULL, eps = 1e-10, reltol = 0.5, lambdamax= 10^6, traceCV=TRUE)

Arguments

XXblocks List of data frames or matrices, representing b=1,...,B data blocks of dimen-
sions n x p_b.

Y Response vector: numeric, binary, factor or survival.
X1 Matrix. Dimension n x p_0, p_0 < n, representing unpenalized covariates.
kfold Integer. Desired fold.
intercept Boolean. Should an intercept be included?
parallel Boolean. Should computation be done in parallel? If TRUE, requires to run

setupParallel first.
fixedfolds Boolean. Should fixed splits be used for reproducibility?
model Character. Any of c("linear", "logistic", "cox"). Is inferred from Y when

NULL.
eps Scalar. Numerical bound for IWLS convergence.
reltol Scalar. Relative tolerance for optimization method.
lambdamax Numeric. Upperbound for lambda.
traceCV Boolean. Should the CV results be traced and printed?

Details

This function is basically a wrapper for applying optLambdas per data block separately using Brent
optimization.

Value

Numerical vector containing penalties optimized separately per data block. Useful for initialization.

See Also

optLambdas, optLambdasWrap which optimize the penalties jointly. A full demo and data are
available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

16 IWLSCoxridge

Examples

data(dataXXmirmeth)
resp <- dataXXmirmeth[[1]]
XXmirmeth <- dataXXmirmeth[[2]]

cvperblock2 <- fastCV2(XXblocks=XXmirmeth,Y=resp,kfold=10,fixedfolds = TRUE)
lambdas <- cvperblock2$lambdas

IWLSCoxridge Iterative weighted least squares algorithm for Cox ridge regression.

Description

Iterative weighted least squares algorithm for Cox ridge regression. Updates the weights and linear
predictors until convergence.

Usage

IWLSCoxridge(XXT, Y, X1 = NULL, intercept = FALSE, eps = 1e-07, maxItr = 25,
trace = FALSE, E0 = NULL)

Arguments

XXT Matrix. Dimensions nxn. Sample cross-product from penalized variables, usu-
ally computed by SigmaFromBlocks.

Y Response vector: class survival.

X1 Matrix. Dimension n x p_0, p_0 < n, representing unpenalized covariates.

intercept Boolean. Should an intercept be included?

eps Scalar. Numerical bound for IWLS convergence.

maxItr Integer. Maximum number of iterations used in IWLS.

trace Boolean. Should the output of the IWLS algorithm be traced?

E0 Numerical vector or NULL. Optional initial values for linear predictor. Same
length as Y. Usually NULL, which initializes linear predictor with 0.

Details

Usually, Cox ridge regression does not use an intercept, as this is part of the baseline hazard. The
latter is estimated using the Breslow estimator. To keep the function computationally efficient it
returns the linear predictors (which suffice for predictions), instead of parameter estimates. These
may be obtained by applying the betasout function to the output of this function.

IWLSCoxridge 17

Value

List, containing:

etas Numerical vector: Final linear predictors

Ypred Predicted survival

convergence Boolean: has IWLS converged?

nIt Number of iterations

Hres Auxiliary list object. Passed on to other functions

linearized Linearized predictions

unpen Boolean: are there any unpenalized covariates involved? Passed on to other
functions

intercept Boolean: Is an intercept included?

eta0 Numerical vector: Initial linear predictors

X1 Matrix: design matrix unpenalized variables

References

Mark A. van de Wiel, Mirrelijn van Nee, Armin Rauschenberger (2021). Fast cross-validation for
high-dimensional ridge regression. J Comp Graph Stat

See Also

IWLSridge for linear and logistic ridge. betasout for obtaining parameter estimates. predictIWLS
for predictions on new samples. A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Examples

data(dataXXmirmeth)
resp <- dataXXmirmeth[[1]]
XXmirmeth <- dataXXmirmeth[[2]]
lambdas <- c(100,1000)

Create fake survival data
respsurv <- Surv(rexp(length(resp)),resp)

Prepare fitting for the specified penalties.
XXT <- SigmaFromBlocks(XXmirmeth,penalties=lambdas)

Fit. fit$etas contains the n linear predictors
fit <- IWLSCoxridge(XXT,Y=respsurv)

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

18 IWLSridge

IWLSridge Iterative weighted least squares algorithm for linear and logistic ridge
regression.

Description

Iterative weighted least squares algorithm for linear and logistic ridge regression. Updates the
weights and linear predictors until convergence.

Usage

IWLSridge(XXT, Y, X1 = NULL, intercept = TRUE, frac1 = NULL, eps = 1e-07,
maxItr = 25, trace = FALSE, model = NULL, E0 = NULL)

Arguments

XXT Matrix. Dimensions nxn. Sample cross-product from penalized variables, usu-
ally computed by SigmaFromBlocks.

Y Response vector: numeric, binary, or two-class factor

X1 Matrix. Dimension n x p_0, p_0 < n, representing unpenalized covariates.

intercept Boolean. Should an intercept be included?

frac1 Scalar. Prior fraction of cases. Only relevant for model="logistic".

eps Scalar. Numerical bound for IWLS convergence.

maxItr Integer. Maximum number of iterations used in IWLS.

trace Boolean. Should the output of the IWLS algorithm be traced?

model Character. Any of c("linear", "logistic"). Is inferred from Y when NULL.
Note that the cox model for survival is covered by the function IWLSCoxridge.

E0 Numerical vector or NULL. Optional initial values for linear predictor. Same
length as Y. Usually NULL, which initializes linear predictor with 0.

Details

An (unpenalized) intercept is included by default. To keep the function computationally efficient it
returns the linear predictors (which suffice for predictions), instead of parameter estimates. These
may be obtained by applying the betasout function to the output of this function.

Value

List, containing:

etas Numerical vector: Final linear predictors

Ypred Predicted survival

convergence Boolean: has IWLS converged?

nIt Number of iterations

mgcv_lambda 19

Hres Auxiliary list object. Passed on to other functions

linearized Linearized predictions

unpen Boolean: are there any unpenalized covariates involved? Passed on to other
functions

intercept Boolean: Is an intercept included?

eta0 Numerical vector: Initial linear predictors

X1 Matrix: design matrix unpenalized variables

References

Mark A. van de Wiel, Mirrelijn van Nee, Armin Rauschenberger (2021). Fast cross-validation for
high-dimensional ridge regression. J Comp Graph Stat

See Also

IWLSCoxridge for Cox ridge. betasout for obtaining parameter estimates. predictIWLS for pre-
dictions on new samples. A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Examples

data(dataXXmirmeth)
resp <- dataXXmirmeth[[1]]
XXmirmeth <- dataXXmirmeth[[2]]
lambdas <- c(100,1000)

Prepare fitting for the specified penalties.
XXT <- SigmaFromBlocks(XXmirmeth,penalties=lambdas)

Fit. fit$etas contains the n linear predictors
fit <- IWLSridge(XXT,Y=resp)

mgcv_lambda Maximum marginal likelihood score

Description

Computed maximum marginal likelihood score for given penalty parameters using mgcv.

Usage

mgcv_lambda(penalties, XXblocks,Y, model=NULL, printscore=TRUE, pairing=NULL, sigmasq = 1,
opt.sigma=ifelse(model=="linear",TRUE, FALSE))

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

20 mlikCV

Arguments

penalties Numeric vector.

XXblocks List of nxn matrices. Usually output of createXXblocks.

Y Response vector: numeric, binary, factor or survival.

model Character. Any of c("linear", "logistic", "cox"). Is inferred from Y when
NULL.

printscore Boolean. Should the score be printed?

pairing Numerical vector of length 3 or NULL when pairs are absent. Represents the
indices (in XXblocks) of the two data blocks involved in pairing, plus the index
of the paired block.

sigmasq Default error variance.

opt.sigma Boolean. Should the error variance be optimized as well? Only relevant for
model="linear".

Details

See gam for details on how the marginal likelihood is computed.

Value

Numeric, marginal likelihood score for given penalties

References

Wood, S. N. (2011), Fast stable restricted maximum likelihood and marginal likelihood estimation
of semiparametric generalized linear models, J. Roy. Statist. Soc., B 73(1), 3-36.

See Also

CVscore for cross-validation alternative. A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

mlikCV Outer-loop cross-validation for estimating performance of marginal
likelihood based multiridge

Description

Outer-loop cross-validation for estimating performance of marginal likelihood based multiridge.
Outer fold is for testing; penalty parameter tuning is performed by marginal likelihood estimation

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

mlikCV 21

Usage

mlikCV(penaltiesinit, XXblocks, Y, pairing = NULL, outfold = 5, nrepeatout = 1,
balance = TRUE,fixedfolds = TRUE, model = NULL, intercept =
ifelse(is(Y, "Surv"), FALSE, TRUE), reltol = 1e-04, trace = FALSE, optmethod1 = "SANN",
optmethod2 = ifelse(length(penaltiesinit) == 1, "Brent", "Nelder-Mead"),
maxItropt1 = 10, maxItropt2 = 25, parallel = FALSE, pref = NULL,
fixedpen = NULL, sigmasq = 1, opt.sigma=ifelse(model=="linear",TRUE, FALSE))

Arguments

penaltiesinit Numeric vector. Initial values for penaltyparameters. May be obtained from
fastCV2.

XXblocks List of nxn matrices. Usually output of createXXblocks.
Y Response vector: numeric, binary, factor or survival.
pairing Numerical vector of length 3 or NULL when pairs are absent. Represents the

indices (in XXblocks) of the two data blocks involved in pairing, plus the index
of the paired block.

outfold Integer. Outer fold for test samples.
nrepeatout Integer. Number of repeated splits for outer fold.
balance Boolean. Should the splits be balanced in terms of response labels?
fixedfolds Boolean. Should fixed splits be used for reproducibility?
intercept Boolean. Should an intercept be included?
model Character. Any of c("linear", "logistic", "cox"). Is inferred from Y when

NULL.
trace Boolean. Should the output of the IWLS algorithm be traced?
reltol Scalar. Relative tolerance for optimization methods.
optmethod1 Character. First, global search method. Any of the methods c("Brent", "Nelder-Mead",

"Sann") may be used, but simulated annealing by "Sann" is recommended to
search a wide landscape. Other unconstrained methods offered by optim may
also be used, but have not been tested.

optmethod2 Character. Second, local search method. Any of the methods c("Brent",
"Nelder-Mead", "Sann") may be used, but "Nelder-Mead" is generally rec-
ommended. Other unconstrained methods offered by optim may also be used,
but have not been tested.

maxItropt1 Integer. Maximum number of iterations for optmethod1.
maxItropt2 Integer. Maximum number of iterations for optmethod2.
parallel Boolean. Should computation be done in parallel? If TRUE, requires to run

setupParallel first.
pref Integer vector or NULL. Contains indices of data types in XXblocks that are pref-

erential.
fixedpen Integer vector or NULL. Contains indices of data types of which penalty is fixed

to the corresponding value in penaltiesinit.
sigmasq Default error variance.
opt.sigma Boolean. Should the error variance be optimized as well? Only relevant for

model="linear".

22 mlikCV

Details

WARNING: this function may be very time-consuming. The number of evaluations may equal
nrepeatout*outerfold*(maxItropt1+maxItropt2). Computing time may be estimated by mul-
tiplying computing time of optLambdas_mgcvWrap by nrepeatout*outerfold.

Value

List with the following components:

sampleindex Numerical vector: sample indices

true True responses

linpred Cross-validated linear predictors

See Also

optLambdas_mgcv, optLambdas_mgcvWrap which optimize the penalties. Scoring which may ap-
plied to output of this function to obtain overall cross-validated performance score. doubleCV for
double cross-validation counterpart. A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Examples

data(dataXXmirmeth)
resp <- dataXXmirmeth[[1]]
XXmirmeth <- dataXXmirmeth[[2]]

Find initial lambdas: fast CV per data block separately.
cvperblock2 <- fastCV2(XXblocks=XXmirmeth,Y=resp,kfold=10,fixedfolds = TRUE)
lambdas <- cvperblock2$lambdas

Outer cross-validation, inner marginal likelihood optimization
Not run:
perfmlik <- mlikCV(penaltiesinit=lambdas,XXblocks=XXmirmeth,Y=resp,outfold=10,
nrepeatout=1)

Performance metrics
Scoring(perfmlik$linpred,perfmlik$true,score="auc",print=TRUE)
Scoring(perfmlik$linpred,perfmlik$true,score="brier",print=TRUE)
Scoring(perfmlik$linpred,perfmlik$true,score="loglik",print=TRUE)

End(Not run)

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

optLambdas 23

optLambdas Find optimal ridge penalties.

Description

Optimizes a cross-validated score w.r.t. ridge penalties for multiple data blocks.

Usage

optLambdas(penaltiesinit = NULL, XXblocks, Y, X1 = NULL, pairing = NULL, folds,
intercept = ifelse(is(Y, "Surv"), FALSE, TRUE), frac1 = NULL, score = "loglik",
model = NULL, epsIWLS = 0.001, maxItrIWLS = 25, traceCV = TRUE, reltol = 1e-04,
optmethod = ifelse(length(penaltiesinit) == 1, "Brent", "Nelder-Mead"), maxItropt = 500,
save = FALSE, parallel = FALSE, fixedpen = NULL, fixedseed = TRUE)

Arguments

penaltiesinit Numeric vector. Initial values for penaltyparameters. May be obtained from
fastCV2.

XXblocks List of nxn matrices. Usually output of createXXblocks.

Y Response vector: numeric, binary, factor or survival.

X1 Matrix. Dimension n x p_0, p_0 < n, representing unpenalized covariates

pairing Numerical vector of length 3 or NULL when pairs are absent. Represents the
indices (in XXblocks) of the two data blocks involved in pairing, plus the index
of the paired block.

folds List, containing the splits of the samples. Usually obtained by CVfolds

intercept Boolean. Should an intercept be included?

frac1 Scalar. Prior fraction of cases. Only relevant for model=" logistic".

score Character. See Details.

model Character. Any of c("linear", "logistic", "cox"). Is inferred from Y when
NULL.

epsIWLS Scalar. Numerical bound for IWLS convergence.

maxItrIWLS Integer. Maximum number of iterations used in IWLS.

traceCV Boolean. Should the output of the IWLS algorithm be traced?

reltol Scalar. Relative tolerance for optimization methods.

optmethod Character. Optimization method. Any of the methods c("Brent", "Nelder-Mead",
"Sann") may be used, but "Nelder-Mead" is generally recommended. Other
unconstrained methods offered by optim may also be used, but have not been
tested.

maxItropt Integer. Maximum number of iterations for optmethod.

save Boolean. If TRUE appends the penalties and resulting CVscore to global vari-
able allscores

24 optLambdas

parallel Boolean. Should computation be done in parallel? If TRUE, requires to run
setupParallel first.

fixedpen Integer vector or NULL. Contains indices of data types of which penalty is fixed
to the corresponding value in penaltiesinit.

fixedseed Boolean. Should the initialization be fixed? For reproducibility.

Details

See Scoring for details on score. We highly recommend to use smooth scoring functions, in
particular "loglik". For ranking-based criteria like auc and cindex we advise to use repeated CV
(see CVfolds) to avoid ending up in any of the many local optima.

Value

List, with components:

optres Output of the optimizer

optpen Vector with determined optimal penalties

allsc Matrix with CV scores for all penalty parameter configurations used by the op-
timizer

See Also

optLambdasWrap for i) (recommended) optimization in two steps: first global, then local; and ii)
sequential optimization when some data types are preferred over others. fastCV2 for initialization
of penalties. A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Examples

data(dataXXmirmeth)
resp <- dataXXmirmeth[[1]]
XXmirmeth <- dataXXmirmeth[[2]]

Find initial lambdas: fast CV per data block separately.
cvperblock2 <- fastCV2(XXblocks=XXmirmeth,Y=resp,kfold=10,fixedfolds = TRUE)
lambdas <- cvperblock2$lambdas

Create (repeated) CV-splits of the data.
leftout <- CVfolds(Y=resp,kfold=10,nrepeat=3,fixedfolds = TRUE)

One-pass optimization
Increase the number of iterations for optimal results
jointlambdas <- optLambdas(penaltiesinit=lambdas, XXblocks=XXmirmeth,Y=resp,
folds=leftout,score="loglik",save=T,maxItropt=5)

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

optLambdasWrap 25

optLambdasWrap Find optimal ridge penalties with sequential optimization.

Description

Sequentially optimizes a cross-validated score w.r.t. ridge penalties for multiple data blocks. Also
implements preferential ridge, which allows to first optimize for the preferential data types.

Usage

optLambdasWrap(penaltiesinit = NULL, XXblocks, Y, X1 = NULL, pairing = NULL,
folds, intercept = ifelse(is(Y, "Surv"), FALSE, TRUE), frac1 = NULL,
score = "loglik", model = NULL, epsIWLS = 0.001, maxItrIWLS = 25,
traceCV = TRUE, reltol = 1e-04, optmethod1 = "SANN", optmethod2 =
ifelse(length(penaltiesinit) == 1, "Brent", "Nelder-Mead"), maxItropt1 = 10,
maxItropt2 = 25, save = FALSE, parallel = FALSE, pref = NULL, fixedpen = NULL)

Arguments

penaltiesinit Numeric vector. Initial values for penaltyparameters. May be obtained from
fastCV2.

XXblocks List of nxn matrices. Usually output of createXXblocks.

Y Response vector: numeric, binary, factor or survival.

X1 Matrix. Dimension n x p_0, p_0 < n, representing unpenalized covariates

pairing Numerical vector of length 3 or NULL when pairs are absent. Represents the
indices (in XXblocks) of the two data blocks involved in pairing, plus the index
of the paired block.

folds List, containing the splits of the samples. Usually obtained by CVfolds

intercept Boolean. Should an intercept be included?

frac1 Scalar. Prior fraction of cases. Only relevant for model=" logistic".

score Character. See Details.

model Character. Any of c("linear", "logistic", "cox"). Is inferred from Y when
NULL.

epsIWLS Scalar. Numerical bound for IWLS convergence.

maxItrIWLS Integer. Maximum number of iterations used in IWLS.

traceCV Boolean. Should the output of the IWLS algorithm be traced?

reltol Scalar. Relative tolerance for optimization methods.

optmethod1 Character. First, global search method. Any of the methods c("Brent","Nelder-Mead",
"Sann") may be used, but simulated annealing by "Sann" is recommended to
search a wide landscape. Other unconstrained methods offered by optim may
also be used, but have not been tested.

26 optLambdasWrap

optmethod2 Character. Second, local search method. Any of the methods c("Brent","Nelder-Mead",
"Sann") may be used, but "Nelder-Mead" is generally recommended. Other
unconstrained methods offered by optim may also be used, but have not been
tested.

maxItropt1 Integer. Maximum number of iterations for optmethod1.

maxItropt2 Integer. Maximum number of iterations for optmethod2.

save Boolean. If TRUE appends the penalties and resulting CVscore to global vari-
able allscores

parallel Boolean. Should computation be done in parallel? If TRUE, requires to run
setupParallel first.

pref Integer vector or NULL. Contains indices of data types in XXblocks that are pref-
erential.

fixedpen Integer vector or NULL. Contains indices of data types of which penalty is fixed
to the corresponding value in penaltiesinit.

Details

As opposed to optLambdas this function first searches globally, then locally. Hence, more time-
consuming, but better guarded against multiple local optima.

See Scoring for details on score. We highly recommend to use smooth scoring functions, in
particular "loglik". For ranking-based criteria like "auc" and "cindex" we advise to use repeated
CV (see CVfolds) to avoid ending up in any of the many local optima.

Value

List, with components:

res Outputs of all optimizers used

lambdas List of penalties found by the optimizers

optpen Numerical vector with final, optimal penalties

See Also

optLambdas for one-pass optimization. fastCV2 for initialization of penalties.A full demo and data
are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Examples

data(dataXXmirmeth)
resp <- dataXXmirmeth[[1]]
XXmirmeth <- dataXXmirmeth[[2]]

Find initial lambdas: fast CV per data block separately.
cvperblock2 <- fastCV2(XXblocks=XXmirmeth,Y=resp,kfold=10,fixedfolds = TRUE)
lambdas <- cvperblock2$lambdas

Create (repeated) CV-splits of the data.

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

optLambdas_mgcv 27

leftout <- CVfolds(Y=resp,kfold=10,nrepeat=3,fixedfolds = TRUE)

Optimizes cross-validate criterion (default: log-lik)
Increase the number of iterations for optimal results
jointlambdas <- optLambdasWrap(penaltiesinit=lambdas, XXblocks=XXmirmeth,Y=resp,
folds=leftout,score="loglik",save=T,maxItropt1=5, maxItropt2=5)

optLambdas_mgcv Find optimal ridge penalties with maximimum marginal likelihood

Description

Optimizes a marginal likelihood score w.r.t. ridge penalties for multiple data blocks.

Usage

optLambdas_mgcv(penaltiesinit=NULL, XXblocks,Y, pairing=NULL, model=NULL, reltol=1e-4,
optmethod=ifelse(length(penaltiesinit)==1,"Brent", "Nelder-Mead"),maxItropt=500,
tracescore=TRUE, fixedpen=NULL, fixedseed =TRUE, sigmasq = 1,
opt.sigma=ifelse(model=="linear",TRUE, FALSE))

Arguments

penaltiesinit Numeric vector. Initial values for penaltyparameters. May be obtained from
fastCV2.

XXblocks List of nxn matrices. Usually output of createXXblocks.

Y Response vector: numeric, binary, factor or survival.

pairing Numerical vector of length 3 or NULL when pairs are absent. Represents the
indices (in XXblocks) of the two data blocks involved in pairing, plus the index
of the paired block.

model Character. Any of c("linear", "logistic", "cox"). Is inferred from Y when
NULL.

reltol Scalar. Relative tolerance for optimization methods.

optmethod Character. Optimization method. Any of the methods c("Brent", "Nelder-Mead",
"Sann") may be used, but "Nelder-Mead" is generally recommended. Other
unconstrained methods offered by optim may also be used, but have not been
tested.

maxItropt Integer. Maximum number of iterations for optmethod.

tracescore Boolean. Should the output of the scores be traced?

fixedpen Integer vector or NULL. Contains indices of data types of which penalty is fixed
to the corresponding value in penaltiesinit.

fixedseed Boolean. Should the initialization be fixed? For reproducibility.

sigmasq Default error variance.

opt.sigma Boolean. Should the error variance be optimized as well? Only relevant for
model="linear".

28 optLambdas_mgcv

Details

See gam for details on how the marginal likelihood is computed.

Value

List, with components:

optres Output of the optimizer

optpen Vector with determined optimal penalties

allsc Matrix with marginal likelihood scores for all penalty parameter configurations
used by the optimizer

See Also

optLambdas_mgcvWrap for i) (recommended) optimization in two steps: first global, then local; and
ii) sequential optimization when some data types are preferred over others. A full demo and data
are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Examples

data(dataXXmirmeth)
resp <- dataXXmirmeth[[1]]
XXmirmeth <- dataXXmirmeth[[2]]

Find initial lambdas: fast CV per data block separately.
cvperblock2 <- fastCV2(XXblocks=XXmirmeth,Y=resp,kfold=10,fixedfolds = TRUE)
lambdas <- cvperblock2$lambdas

Create (repeated) CV-splits of the data.
leftout <- CVfolds(Y=resp,kfold=10,nrepeat=3,fixedfolds = TRUE)

Compute cross-validated score for initial lambdas
CVscore(penalties=lambdas, XXblocks=XXmirmeth,Y=resp,folds=leftout,
score="loglik")

Optimize by using marginal likelihood criterion
jointlambdas2 <- optLambdas_mgcvWrap(penaltiesinit=lambdas, XXblocks=XXmirmeth,
Y=resp)

Optimal lambdas
optlambdas <- jointlambdas2$optpen

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

optLambdas_mgcvWrap 29

optLambdas_mgcvWrap Find optimal ridge penalties with sequential optimization.

Description

Sequentially optimizes a marginal likelihood score w.r.t. ridge penalties for multiple data blocks.

Usage

optLambdas_mgcvWrap(penaltiesinit=NULL, XXblocks,Y, pairing=NULL, model=NULL, reltol=1e-4,
optmethod1= "SANN", optmethod2 =ifelse(length(penaltiesinit)==1,"Brent", "Nelder-Mead"),
maxItropt1=10,maxItropt2=25,tracescore=TRUE,fixedseed =TRUE, pref=NULL, fixedpen=NULL,
sigmasq = 1, opt.sigma=ifelse(model=="linear",TRUE, FALSE))

Arguments

penaltiesinit Numeric vector. Initial values for penaltyparameters. May be obtained from
fastCV2.

XXblocks List of nxn matrices. Usually output of createXXblocks.
Y Response vector: numeric, binary, factor or survival.
pairing Numerical vector of length 3 or NULL when pairs are absent. Represents the

indices (in XXblocks) of the two data blocks involved in pairing, plus the index
of the paired block.

model Character. Any of c("linear", "logistic", "cox"). Is inferred from Y when
NULL.

reltol Scalar. Relative tolerance for optimization methods.
optmethod1 Character. First, global search method. Any of the methods c("Brent", "Nelder-Mead",

"Sann") may be used, but simulated annealing by "Sann" is recommended to
search a wide landscape. Other unconstrained methods offered by optim may
also be used, but have not been tested.

optmethod2 Character. Second, local search method. Any of the methods c("Brent",
"Nelder-Mead", "Sann") may be used, but "Nelder-Mead" is generally rec-
ommended. Other unconstrained methods offered by optim may also be used,
but have not been tested.

maxItropt1 Integer. Maximum number of iterations for optmethod1.
maxItropt2 Integer. Maximum number of iterations for optmethod2.
tracescore Boolean. Should the output of the scores be traced?
fixedseed Boolean. Should the initialization be fixed? For reproducibility.
pref Integer vector or NULL. Contains indices of data types in XXblocks that are pref-

erential.
fixedpen Integer vector or NULL. Contains indices of data types of which penalty is fixed

to the corresponding value in penaltiesinit.
sigmasq Default error variance.
opt.sigma Boolean. Should the error variance be optimized as well? Only relevant for

model="linear".

30 predictIWLS

Details

As opposed to optLambdas_mgcv this function first searches globally, then locally. Hence, more
time-consuming, but better guarded against multiple local optima. See gam for details on how the
marginal likelihood is computed.

Value

List, with components:

res Outputs of all optimizers used

lambdas List of penalties found by the optimizers

optpen Numerical vector with final, optimal penalties

References

Wood, S. N. (2011), Fast stable restricted maximum likelihood and marginal likelihood estimation
of semiparametric generalized linear models, J. Roy. Statist. Soc., B 73(1), 3-36.

See Also

optLambdas_mgcv for one-pass optimization. A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

predictIWLS Predictions from ridge fits

Description

Produces predictions from ridge fits for new data.

Usage

predictIWLS(IWLSfit, X1new = NULL, Sigmanew)

Arguments

IWLSfit List, containing fits from either IWLSridge (linear, logistic ridge) or IWLSCoxridge

X1new Matrix. Dimension nnew x p_0, representing unpenalized covariates for new
data.

Sigmanew Matrix. Dimensions nnew x n. Sample cross-product from penalized variables,
usually computed by first applying createXXblocks and then SigmaFromBlocks.

Details

Predictions rely purely on the linear predictors, and do not require producing the parameter vector.

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Scoring 31

Value

Numerical vector of linear predictor for the test samples.

See Also

IWLSridge (IWLSCoxridge) for fitting linear and logistic ridge (Cox ridge). betasout for obtaining
parameter estimates. Scoring to evaluate the predictions. A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Examples

#Example below shows how to create the input argument Sigmanew (for simulated data)
#Simulate
Xbl1 <- matrix(rnorm(1000),nrow=10)
Xbl2 <- matrix(rnorm(2000),nrow=10)
Xbl1new <- matrix(rnorm(200),nrow=2)
Xbl2new <- matrix(rnorm(400),nrow=2)

#check whether dimensions are correct
nrow(Xbl1)==nrow(Xbl1new)
nrow(Xbl2)==nrow(Xbl2new)
ncol(Xbl1)==nrow(Xbl2)
ncol(Xbl1new)==ncol(Xbl2new)

#create cross-product
XXbl <- createXXblocks(list(Xbl1,Xbl2),list(Xbl1new,Xbl2new))

#suppose penalties for two data types equal 5,10, respectively
Sigmanew <- SigmaFromBlocks(XXbl,c(5,10))

#check dimensions (should be nnew x n)
dim(Sigmanew)

Scoring Evaluate predictions

Description

Evaluates predictions by a score suitable for the corresponding response

Usage

Scoring(lp, Y, model = NULL, score = ifelse(model == "linear", "mse", "loglik"),
print = TRUE)

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

32 setupParallel

Arguments

lp Numerical vector. Linear predictor.
Y Response vector: numeric, binary, factor or survival.
score Character. See Details.
model Character. Any of c("linear", "logistic", "cox"). Is inferred from Y when

NULL.
print Boolean. Should the score be printed on screen.

Details

Several scores are allowed, depending on the type of output. For model = "linear", score equals
any of c("loglik","mse","abserror","cor","kendall","spearman"), denoting CV-ed log-
likelihood, mean-squared error, mean absolute error, Pearson (Kendall, Spearman) correlation with
response. For model = "logistic", score equals any of c("loglik","auc", "brier"), denoting
CV-ed log-likelihood, area-under-the-ROC-curve, and brier score a.k.a. MSE. For model = "cox",
score equals any of c("loglik","cindex"), denoting CV-ed log-likelihood, and c-index.

Value

Numerical value.

See Also

CVscore for obtaining the cross-validated score (for given penalties), and doubleCV to obtain dou-
bly cross-validated linear predictors to which Scoring can be applied to estimated predictive per-
formance by double cross-validation. A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

setupParallel Setting up parallel computing

Description

This function sets up parallel computing by the package snowfall.

Usage

setupParallel(ncpus = 2, sourcefile = NULL, sourcelibraries =
c("multiridge","survival","pROC","risksetROC"))

Arguments

ncpus Integer. Number of cpus to use. Should be >= 2.
sourcefile Character. Additional source files to be loaded in parallel. Only required when

parallel computing is also desired for functions not available in multiridge.
sourcelibraries

Character vector. Libraries to be loaded in parallel. Defaults to the libraries
multiridge depends on.

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

SigmaFromBlocks 33

Details

Parallel computing is available for several functions that rely on cross-validation. If double CV is
used, parallel computing is applied to the outer loop, to optimize efficiency.

Value

No return value, called for side effects

See Also

Snowfall package for further documentation on parallel computing. A full demo and data are avail-
able from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

Examples

Not run:
setupParallel(ncpus=4)

End(Not run)

SigmaFromBlocks Create penalized sample cross-product matrix

Description

Creates penalized sample cross-product matrix, dimension nxn.

Usage

SigmaFromBlocks(XXblocks, penalties, pairing = NULL)

Arguments

XXblocks List of nxn matrices. Usually output of createXXblocks.

penalties Numeric vector, representing penaltyparameters.

pairing Numerical vector of length 3 or NULL when pairs are absent. Represents the
indices (in XXblocks) of the two data blocks involved in pairing, plus the index
of the paired block.

Value

Matrix of size nxn.

See Also

A full demo and data are available from:
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4
https://drive.google.com/open?id=1NUfeOtN8-KZ8A2HZzveG506nBwgW64e4

34 SigmaFromBlocks

Examples

#Example
#Simulate
Xbl1 <- matrix(rnorm(1000),nrow=10)
Xbl2 <- matrix(rnorm(2000),nrow=10)

#check whether dimensions are correct
ncol(Xbl1)==nrow(Xbl2)

#create cross-product
XXbl <- createXXblocks(list(Xbl1,Xbl2))

#suppose penalties for two data types equal 5,10, respectively
Sigma <- SigmaFromBlocks(XXbl,c(5,10))

#check dimensions (should be n x n)
dim(Sigma)

Index

∗ datasets
dataXXmirmeth, 11

∗ package
multiridge-package, 2

augment, 5

betasout, 3, 6, 16–19, 31

createXblocks, 6, 7, 8
createXXblocks, 3, 5, 7, 8, 10, 12, 20, 21, 23,

25, 27, 29, 30, 33
CVfolds, 9, 10, 23–26
CVscore, 3, 10, 20, 32

dataXXmirmeth, 3, 11
doubleCV, 3, 11, 12, 22, 32

fastCV2, 3, 12, 15, 21, 23–27, 29

gam, 20, 28, 30

IWLSCoxridge, 3, 6, 16, 18, 19, 30, 31
IWLSridge, 3, 6, 17, 18, 30, 31

mgcv_lambda, 19
mlikCV, 3, 20
multiridge (multiridge-package), 2
multiridge-package, 2

optim, 13, 21, 23, 25–27, 29
optLambdas, 14, 15, 23, 26
optLambdas_mgcv, 22, 27, 30
optLambdas_mgcvWrap, 3, 22, 28, 29
optLambdasWrap, 3, 14, 15, 24, 25

predictIWLS, 3, 17, 19, 30

Scoring, 10, 14, 22, 24, 26, 31, 31
setupParallel, 3, 10, 13, 15, 21, 24, 26, 32
SigmaFromBlocks, 3, 16, 18, 30, 33

35

	multiridge-package
	augment
	betasout
	createXblocks
	createXXblocks
	CVfolds
	CVscore
	dataXXmirmeth
	doubleCV
	fastCV2
	IWLSCoxridge
	IWLSridge
	mgcv_lambda
	mlikCV
	optLambdas
	optLambdasWrap
	optLambdas_mgcv
	optLambdas_mgcvWrap
	predictIWLS
	Scoring
	setupParallel
	SigmaFromBlocks
	Index

