Package: texteffect 0.3

Christian Fong

texteffect: Discovering Latent Treatments in Text Corpora and Estimating Their Causal Effects

Implements the approach described in Fong and Grimmer (2016) <https://aclweb.org/anthology/P/P16/P16-1151.pdf> for automatically discovering latent treatments from a corpus and estimating the average marginal component effect (AMCE) of each treatment. The data is divided into a training and test set. The supervised Indian Buffet Process (sibp) is used to discover latent treatments in the training set. The fitted model is then applied to the test set to infer the values of the latent treatments in the test set. Finally, Y is regressed on the latent treatments in the test set to estimate the causal effect of each treatment.

Authors:Christian Fong <[email protected]>

texteffect_0.3.tar.gz
texteffect_0.3.tar.gz(r-4.5-noble)texteffect_0.3.tar.gz(r-4.4-noble)
texteffect_0.3.tgz(r-4.4-emscripten)texteffect_0.3.tgz(r-4.3-emscripten)
texteffect.pdf |texteffect.html
texteffect/json (API)

# Install 'texteffect' in R:
install.packages('texteffect', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:
  • BioSample - Sample from the Fong and Grimmer Wikipedia Biography Data

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.30 score 2 stars 7 scripts 196 downloads 8 exports 29 dependencies

Last updated 6 years agofrom:3d3e575e60. Checks:1 OK, 1 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 14 2025
R-4.5-linuxNOTEFeb 14 2025

Exports:infer_Zsibpsibp_amcesibp_amce_plotsibp_exclusivitysibp_param_searchsibp_rank_runssibp_top_words

Dependencies:bootclicolorspacefansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbleutf8vctrsviridisLitewithr