Package: MultiwayRegression 1.2

Eric F. Lock
MultiwayRegression: Perform Tensor-on-Tensor Regression
Functions to predict one multi-way array (i.e., a tensor) from another multi-way array, using a low-rank CANDECOMP/PARAFAC (CP) factorization and a ridge (L_2) penalty [Lock, EF (2018) <doi:10.1080/10618600.2017.1401544>]. Also includes functions to sample from the Bayesian posterior of a tensor-on-tensor model.
Authors:
MultiwayRegression_1.2.tar.gz
MultiwayRegression_1.2.tar.gz(r-4.5-noble)MultiwayRegression_1.2.tar.gz(r-4.4-noble)
MultiwayRegression_1.2.tgz(r-4.4-emscripten)MultiwayRegression_1.2.tgz(r-4.3-emscripten)
MultiwayRegression.pdf |MultiwayRegression.html✨
MultiwayRegression/json (API)
# Install 'MultiwayRegression' in R: |
install.packages('MultiwayRegression', repos = 'https://cloud.r-project.org') |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 6 years agofrom:60ff7e7928. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 15 2025 |
R-4.5-linux | OK | Mar 15 2025 |
R-4.4-linux | OK | Mar 15 2025 |
Dependencies:MASS
Citation
To cite package ‘MultiwayRegression’ in publications use:
Lock EF (2019). MultiwayRegression: Perform Tensor-on-Tensor Regression. R package version 1.2, https://CRAN.R-project.org/package=MultiwayRegression.
ATTENTION: This citation information has been auto-generated from the package DESCRIPTION file and may need manual editing, see ‘help("citation")’.
Corresponding BibTeX entry:
@Manual{, title = {MultiwayRegression: Perform Tensor-on-Tensor Regression}, author = {Eric F. Lock}, year = {2019}, note = {R package version 1.2}, url = {https://CRAN.R-project.org/package=MultiwayRegression}, }