Package: BMS 0.3.5
Stefan Zeugner
BMS: Bayesian Model Averaging Library
Bayesian Model Averaging for linear models with a wide choice of (customizable) priors. Built-in priors include coefficient priors (fixed, hyper-g and empirical priors), 5 kinds of model priors, moreover model sampling by enumeration or various MCMC approaches. Post-processing functions allow for inferring posterior inclusion and model probabilities, various moments, coefficient and predictive densities. Plotting functions available for posterior model size, MCMC convergence, predictive and coefficient densities, best models representation, BMA comparison. Also includes Bayesian normal-conjugate linear model with Zellner's g prior, and assorted methods.
Authors:
BMS_0.3.5.tar.gz
BMS_0.3.5.tar.gz(r-4.5-noble)BMS_0.3.5.tar.gz(r-4.4-noble)
BMS_0.3.5.tgz(r-4.4-emscripten)BMS_0.3.5.tgz(r-4.3-emscripten)
BMS.pdf |BMS.html✨
BMS/json (API)
NEWS
# Install 'BMS' in R: |
install.packages('BMS', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- datafls - FLS (2001) growth data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:d94764f7b6. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 31 2024 |
R-4.5-linux | OK | Oct 31 2024 |
Exports:as.zlmbeta.draws.bmabin2hexbmsestimates.bmaf21hyperfullmodel.ssqgdensityhex2bininfo.bmais.bmais.topmodlps.bmaplotCompplotConvplotModelsizepmp.bmapmpmodelpost.pr2post.varpred.densitytopmodtopmodels.bmazlm
Dependencies: