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as.zlm Extract a Model from a bma Object

Description

Extracts a model out of a bma object’s saved models and converts it to a zlm linear model
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Usage

as.zlm(bmao, model = 1)

Arguments

bmao A bma object, e.g. resulting from a call to bms

model The model index, in one of the following forms:
An integer, denoting the rank of the model (1 for best, 2 for second-best, ...)
A numeric or logical vector of length K describing which covariates are con-
tained in the model
A hexcode character describing which covariates are contained in the model

Details

A bma object stores several ’best’ models it encounters (cf. argument nmodel in bms). as.zlm
extracts a single model and converts it to an object of class zlm, which represents a linear model
estimated under Zellner’s g prior.
The utility model.frame allows to transfrom a zlm model into an OLS model of class lm.

Value

a list of class zlm

Author(s)

Stefan Zeugner

See Also

bms for creating bma objects, zlm for creating zlm objects, pmp.bma for displaying the topmodels in
a bma object

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)

mm=bms(datafls[,1:6],mcmc="enumeration") # do a small BMA chain
topmodels.bma(mm)[,1:5] #display the best 5 models

m2a=as.zlm(mm,4) #extract the fourth best model
summary(m2a)

# Bayesian Model Selection:
# transform the best model into an OLS model:
lm(model.frame(as.zlm(mm)))

# extract the model only containing the 5th regressor
m2b=as.zlm(mm,c(0,0,0,0,1))

http://bms.zeugner.eu
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# extract the model only containing the 5th regressor in hexcode
print(bin2hex(c(0,0,0,0,1)))
m2c=as.zlm(mm,"01")

beta.draws.bma Coefficients of the Best Models

Description

Returns a matrix whose columns are the (expected value or standard deviations of) coefficients for
the best models in a bma object.

Usage

beta.draws.bma(bmao, stdev = FALSE)

Arguments

bmao a ’bma’ object (as e.g. resulting from bms)

stdev if stdev=FALSE then beta.draws.bma returns the (conditional) posterior ex-
pected values of the coefficients (i.e. ’Bayesian coefficients’). If stdev=TRUE it
returns their posterior standard deviations.

Value

Each column presents the coefficients for the model indicated by its column name. The zero coef-
ficients are the excluded covariates per model. Note that the coefficients returned are only those of
the best (100) models encountered by the bma object (cf. argument nmodels of bms).

For aggregate coefficients please refer to coef.bma.

Note

Note that the elements of beta.draws.bma(bmao) correspond to bmao$topmod$betas()

See Also

bms for creating bms objects, coef.bma for aggregate coefficients

Check http://bms.zeugner.eu for additional help.

http://bms.zeugner.eu
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Examples

#sample a bma object:
data(datafls)
mm=bms(datafls,burn=500,iter=5000,nmodel=20)

#coefficients for all
beta.draws.bma(mm)

#standard deviations for the fourth- to eight best models
beta.draws.bma(mm[4:8],TRUE);

bma-class Class "bma"

Description

A list holding results from a BMA iteration chain

Objects from the Class

Objects can be created via calls to bms, but indirectly also via c.bma
A bma object is a list whose elements hold information on input and output for a Bayesian Model
Averaging iteration chain, such as from a call to bms:

Author(s)

Martin Feldkircher and Stefan Zeugner

References

http://bms.zeugner.eu

See Also

bms for creating bma objects,
or topmod for the topmod object

Examples

data(datafls)
mm=bms(datafls)
#show posterior model size
print(mm$info$msize/mm$info$cumsumweights)
#is the same number as in
summary(mm)

http://bms.zeugner.eu
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bms Bayesian Model Sampling and Averaging

Description

Given data and prior information, this function samples all possible model combinations via MC3
or enumeration and returns aggregate results.

Usage

bms(
X.data,
burn = 1000,
iter = NA,
nmodel = 500,
mcmc = "bd",
g = "UIP",
mprior = "random",
mprior.size = NA,
user.int = TRUE,
start.value = NA,
g.stats = TRUE,
logfile = FALSE,
logstep = 10000,
force.full.ols = FALSE,
fixed.reg = numeric(0)

)

Arguments

X.data a data frame or a matrix, with the dependent variable in the first column, fol-
lowed by the covariates (alternatively, X.data can also be provided as a formula).
Note that bms automatically estimates a constant, therefore including constant
terms is not necessary.

burn The (positive integer) number of burn-in draws for the MC3 sampler, defaults to
1000. (Not taken into account if mcmc="enumerate")

iter If mcmc is set to an MC3 sampler, then this is the number of iteration draws to
be sampled (ex burn-ins), default 3000 draws.
If mcmc="enumerate", then iter is the number of models to be sampled, starting
from 0 (defaults to 2K − 1) - cf. start.value.

nmodel the number of best models for which information is stored (default 500). Best
models are used for convergence analysis between likelihoods and MCMC fre-
quencies, as well as likelihood-based inference.
Note that a very high value for nmodel slows down the sampler significantly.
Set nmodel=0 to speed up sampling (if best model information is not needed).
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mcmc a character denoting the model sampler to be used.
The MC3 sampler mcmc="bd" corresponds to a birth/death MCMC algogrithm.
mcmc="rev.jump" enacts a reversible jump algorithm adding a "swap" step to
the birth / death steps from "bd".
Alternatively, the entire model space may be fully enumerated by setting mcmc="enumerate"
which will iterate all possible regressor combinations (Note: consider that this
means 2K iterations, where K is the number of covariates.)
Default is full enumeration (mcmc="enumerate") with less then 15 covariates,
and the birth-death MC3 sampler (mcmc="bd") with 15 covariates or more. Cf.
section ’Details’ for more options.

g the hyperparameter on Zellner’s g-prior for the regression coefficients.
g="UIP" corresponds to g = N , the number of observations (default);
g="BRIC" corresponds to the benchmark prior suggested by Fernandez, Ley and
Steel (2001), i.e g = max(N,K2), where K is the total number of covariates;
g="RIC" sets g = K2 and conforms to the risk inflation criterion by George and
Foster (1994)
g="HQ" sets g = log(N)3 and asymptotically mimics the Hannan-Quinn crite-
rion with CHQ = 3 (cf. Fernandez, Ley and Steel, 2001, p.395)
g="EBL" estimates a local empirical Bayes g-parameter (as in Liang et al. (2008));
g="hyper" takes the ’hyper-g’ prior distribution (as in Liang et al., 2008) with
the default hyper-parameter a set such that the prior expected shrinkage factor
conforms to ’UIP’;
This hyperparameter a can be adjusted (between 2 < a <= 4) by setting
g="hyper=2.9", for instance.
Alternatively, g="hyper=UIP" sets the prior expected value of the shrinkage fac-
tor equal to that of UIP (default), g="hyper=BRIC" sets it according to BRIC
cf section ’Details’ fro more on the hyper-g prior

mprior a character denoting the model prior choice, defaulting to "random":
mprior="fixed" denotes fixed common prior inclusion probabilities for each
regressor as e.g. in Sala-i-Martin, Doppelhofer, and Miller(2004) - for their
fine-tuning, cf. mprior.size. Preferable to mcmc="random" if strong prior in-
formation on model size exists;
mprior="random" (default) triggers the ’random theta’ prior by Ley and Steel
(2008), who suggest a binomial-beta hyperprior on the a priori inclusion proba-
bility;
mprior="uniform" employs the uniform model prior;
mprior="customk" allows for custom model size priors (cf. mprior.size);
mprior="pip" allows for custom prior inclusion probabilities (cf. mprior.size);
Note that the prior on models with more than N-3 regressors is automatically
zero: these models will not be sampled.

mprior.size if mprior is "fixed" or "random", mprior.size is a scalar that denotes the prior
expected value of the model size prior (default K/2).
If mprior="customk" then a custom model size prior can be provided as a K+1
vector detailing the priors from model size 0 to K (e.g. rep(1,K+1) for the uni-
form model prior);
if mprior="pip", then custom prior inclusion probabilities can be provided as a
vector of size K, with elements in the interval (0,1)

user.int ’interactive mode’: print out results to console after ending the routine and plots
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a chart (default TRUE).

start.value specifies the starting model of the iteration chain. For instance a specific model
by the corresponding column indices (e.g. starting.model=numeric(K) starts
from the null model including solely a constant term) or start.value=c(3,6)
for a starting model only including covariates 3 and 6.
If start.model is set to an integer (e.g. start.model=15) then that number
of covariates (here: 15 covariates) is randomly chosen and the starting model is
identified by those regressors with an OLS t-statistic>0.2.
The default value start.value=NA corresponds to start.value=min(ncol(X.data),nrow(X.data)-3).
Note that start.value=0 or start.value=NULL starts from the null model.
If mcmc="enumerate" then start.value is the index to start the iteration (de-
fault: 0, the null model) . Any number between 0 and K2 − 1 is admissible.

g.stats TRUE if statistics on the shrinkage factor g/(1+g) should be collected, defaulting
to TRUE (Note: set g.stats=FALSE for faster iteration.)

logfile setting logfile=TRUE produces a logfile named "test.log" in your current
working directory, in order to keep track of the sampling procedure. logfile
equal to some filepath (like logfile="subfolder/log.txt") puts the logfile
into that specified position. (default: logfile=FALSE). Note that logfile=""
implies log printouts on the console.

logstep specifies at which number of posterior draws information is written to the log
file; default: 10 000 iterations

force.full.ols default FALSE. If force.full.ols=TRUE, the OLS estimation part of the sam-
pling procedure relies on slower matrix inversion, instead of streamlined rou-
tines. force.full.ols=TRUE can slow down sampling but may deal better with
highly collinear data

fixed.reg indices or variable names of X.data that are fixed regressors to be always in-
cluded in every sampled model. Note: the parameter mprior.size refers to
prior model size including these fixed regressors.

Details

Ad mcmc:
Interaction sampler: adding an ".int" to an MC3 sampler (e.g. "mcmc="bd.int") provides for special
treatment of interaction terms. Interaction terms will only be sampled along with their component
variables: In the colnumn names of X.data, interaction terms need to be denominated by names
consisting of the base terms separated by # (e.g. an interaction term of base variables "A", "B" and
"C" needs column name "A#B#C"). Then variable "A#B#C" will only be included in a model if all
of the component variables ("A", "B", and "C") are included.

The MC3 samplers "bd", "rev.jump", "bd.int" and "rev.jump.int", iterate away from a starting
model by adding, dropping or swapping (only in the case of rev.jump) covariates.

In an MCMC fashion, they thus randomly draw a candidate model and then move to it in case its
marginal likelihood (marg.lik.) is superior to the marg.lik. of the current model.

In case the candidate’s marg.lik is inferior, it is randomly accepted or rejected according to a proba-
bility formed by the ratio of candidate marg.lik over current marg.lik. Over time, the sampler should
thus converge to a sensible distribution. For aggregate results based on these MC3 frequencies, the
first few iterations are typically disregarded (the ’burn-ins’).
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Ad g and the hyper-g prior: The hyper-g prior introduced by Liang et al. (2008) puts a prior
distribution on the shrinkage factor g/(1 + g), namely a Beta distribution Beta(1, 1/2 − 1) that
is governed by the parameter a. a = 4 means a uniform prior distribution of the shrinkage factor,
while a > 2 close to 2 concentrates the prior shrinkage factor close to one.
The prior expected value is E(g/1+g)) = 2/a. In this sense g="hyper=UIP" and g="hyper=BRIC"
set the prior expected shrinkage such that it conforms to a fixed UIP-g (eqng=N) or BRIC-g (g =
max(K2, N) ).

Value

A list of class bma, that may be displayed using e.g. summary.bma or coef.bma. The list contains
the following elements:

info a list of aggregate statistics: iter is the number of iterations, burn the number
of burn-ins.
The following have to be divided by cumsumweights to get posterior expected
values: inccount are the posterior inclusion probabilities, b1mo and b2mo the
first and second moment of coefficients, add.otherstats other statistics of in-
terest (typically the moments of the shrinkage factor), msize is the post. ex-
pected model size, k.vec the posterior model size distribution, pos.sign the
unconditional post. probability of positive coefficients, corr.pmp is the correla-
tion between the best models’ MCMC frequencies and their marg. likelihoods.
timed is the time that was needed for MCMC sampling, cons is the posterior
expected value of the constant. K and N are the maximum number of covariates
and the sample size, respectively.

arguments a list of the evaluated function arguments provided to bms (see above)

topmod a ’topmod’ object containing the best drawn models. see topmod for more details

start.pos the positions of the starting model. If bmao is a’bma’ object this corresponds
to covariates bmao$reg.names[bmao$start.pos]. If bmao is a chain that resulted
from several starting models (cf. c.bma, then start.pos is a list detailing all of
them.

gprior.info a list of class gprior-class, detailing information on the g-prior: gtype corre-
sponds to argument g above, is.constant is FALSE if gtype is either "hyper"
or "EBL", return.g.stats corresponds to argument g.stats above, shrinkage.moments
contains the first and second moments of the shrinkage factor (only if return.g.stats==TRUE),
g details the fixed g (if is.constant==TRUE), hyper.parameter corresponds to
the hyper-g parameter a as in Liang et al. (2008)

mprior.info a list of class mprior-class, detailing information on the model prior: origargs
lists the original arguments to mprior and mprior.size above; mp.msize de-
notes the prior mode size; mp.Kdist is a (K+1) vector with the prior model size
distribution from 0 to K

X.data data.frame or matrix: corresponds to argument X.data above, possibly cleaned
for NAs

reg.names character vector: the covariate names to be used for X.data (corresponds to
variable.names.bma

bms.call the original call to the bms function
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Theoretical background

The models analyzed are Bayesian normal-gamma conjugate models with improper constant and
variance priors akin to Fernandez, Ley and Steel (2001): A model M can be described as follows,
with ϵ ~ N(0, σ2I):

latex

f(β|σ,M, g) N(0, gσ2(X ′X)−1)

Moreover, the (improper) prior on the constant f(α) is put proportional to 1. Similarly, the variance
prior f(σ) is proportional to 1/σ.

Note

There are several ways to speed-up sampling: nmodel=10 saves only the ten best models, at most
a marginal improvement. nmodels=0 does not save the best (500) models, however then posterior
convergence and likelihood-based inference are not possible. the best models, but not their coef-
ficients, which renders the use of image.bma and the paramer exact=TRUE in functions such as
coef.bma infeasible. g.stats=FALSE saves some time by not retaining the shrinkage factors for
the MC3 chain (and the best models). force.fullobject=TRUE in contrast, slows sampling down
significantly if mcmc="enumerate".

Author(s)

Martin Feldkircher, Paul Hofmarcher, and Stefan Zeugner

References

http://bms.zeugner.eu: BMS package homepage with help and tutorials

Feldkircher, M. and S. Zeugner (2015): Bayesian Model Averaging Employing Fixed and Flexible
Priors: The BMS Package for R, Journal of Statistical Software 68(4).

Feldkircher, M. and S. Zeugner (2009): Benchmark Priors Revisited: On Adaptive Shrinkage and
the Supermodel Effect in Bayesian Model Averaging, IMF Working Paper 09/202.

Fernandez, C. E. Ley and M. Steel (2001): Benchmark priors for Bayesian model averaging. Journal
of Econometrics 100(2), 381–427

Ley, E. and M. Steel (2008): On the Effect of Prior Assumptions in Bayesian Model Averaging with
Applications to Growth Regressions. working paper

Liang, F., Paulo, R., Molina, G., Clyde, M. A., and Berger, J. O. (2008). Mixtures of g Priors for
Bayesian Variable Selection. Journal of the American Statistical Association 103, 410-423.

Sala-i-Martin, X. and G. Doppelhofer and R.I. Miller (2004): Determinants of long-term growth:
a Bayesian averaging of classical estimates (BACE) approach. American Economic Review 94(4),
813–835

See Also

coef.bma, plotModelsize and density.bma for some operations on the resulting ’bma’ object,
c.bma for integrating separate MC3 chains and splitting of sampling over several runs.

Check http://bms.zeugner.eu for additional help.

http://bms.zeugner.eu
http://bms.zeugner.eu
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Examples

data(datafls)
#estimating a standard MC3 chain with 1000 burn-ins and 2000 iterations and uniform model priors
bma1 = bms(datafls,burn=1000, iter=2000, mprior="uniform")

##standard coefficients based on exact likelihoods of the 100 best models:
coef(bma1,exact=TRUE, std.coefs=TRUE)

#suppressing user-interactive output, using a customized starting value, and not saving the best
# ...models for only 19 observations (but 41 covariates)
bma2 = bms(datafls[20:39,],burn=1000, iter=2000, nmodel=0, start.value=c(1,4,7,30),

user.int=FALSE)
coef(bma2)

#MC3 chain with a hyper-g prior (custom coefficient a=2.1), saving only the 20 best models,
# ...and an alternative sampling procedure; putting a log entry to console every 1000th step
bma3 = bms(datafls,burn=1000, iter=5000, nmodel=20, g="hyper=2.1", mcmc="rev.jump",

logfile="",logstep=1000)
image(bma3) #showing the coefficient signs of the 20 best models

#enumerating with 10 covariates (= 1024 models), keeping the shrinkage factors
# ...of the best 200 models
bma4 = bms(datafls[,1:11],mcmc="enumerate",nmodel=200,g.stats=TRUE)

#using an interaction sampler for two interaction terms
dataint=datafls
dataint=cbind(datafls,datafls$LifeExp*datafls$Abslat/1000,

datafls$Protestants*datafls$Brit-datafls$Muslim)
names(dataint)[ncol(dataint)-1]="LifeExp#Abslat"
names(dataint)[ncol(dataint)]="Protestants#Brit#Muslim"
bma5 = bms(X.data=dataint,burn=1000,iter=9000,start.value=0,mcmc="bd.int")

density(bma5,reg="English") # plot posterior density for covariate "English"

# a matrix as X.data argument
bms(matrix(rnorm(1000),100,10))

# keeping a set of fixed regressors:
bms(datafls, mprior.size=7, fixed.reg = c("PrScEnroll", "LifeExp", "GDP60"))
# Note that mprior.size=7 means prior model size of 3 fixed to 4 'uncertain' regressors

c.bma Concatenate bma objects

Description

Combines bma objects (resulting from bms). Can be used to split estimation over several machines,
or combine the MCMC results obtained from different starting points.
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Usage

## S3 method for class 'bma'
c(..., recursive = FALSE)

Arguments

... At least two ’bma’ objects (cf. bms)

recursive retained for compatibility with c method

Details

Aggregates the information obtained from several chains. The result is a ’bma’ object (cf. ’Values’
in bms) that can be used just as a standard ’bma’ object.
Note that combine_chains helps in particular to paralllelize the enumeration of the total model
space: A model with K regressors has 2K potential covariate combinations: With K large (more
than 25), this can be pretty time intensive. With the bms arguments start.value and iter, sam-
pling can be done in steps: cf. example ’enumeration’ below.

See Also

bms for creating bma objects

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)

#MCMC case ############################
model1=bms(datafls,burn=1000,iter=4000,mcmc="bd",start.value=c(20,30,35))
model2=bms(datafls,burn=1500,iter=7000,mcmc="bd",start.value=c(1,10,15))

model_all=c(model1,model2)
coef(model_all)
plot(model_all)

#splitting enumeration ########################

#standard case with 12 covariates (4096 differnt combinations):
enum0=bms(datafls[,1:13],mcmc="enumerate")

# now split the task:
# enum1 does everything from model zero (the first model) to model 1999
enum1=bms(datafls[,1:13],mcmc="enumerate",start.value=0,iter=1999)

# enum2 does models from index 2000 to the index 3000 (in total 1001 models)
enum2=bms(datafls[,1:13],mcmc="enumerate",start.value=2000,iter=1000)

# enum3 does models from index 3001 to the end

http://bms.zeugner.eu
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enum3=bms(datafls[,1:13],mcmc="enumerate",start.value=3001)

enum_combi=c(enum1,enum2,enum3)
coef(enum_combi)
coef(enum0)
#both enum_combi and enum0 have exactly the same results
#(one difference: enum_combi has more 'top models' (1500 instead of 500))

datafls FLS (2001) growth data

Description

The economic growth data set from Fernandez, Ley and Steel, Journal of Applied Econometrics
2001

Usage

datafls

Format

A data frame with 53940 rows and 10 variables: A data frame with 72 observations on the following
42 variables.

y numeric: Economic growth 1960-1992 as from the Penn World Tables Rev 6.0

Abslat numeric: Absolute latitude

Spanish numeric: Spanish colony dummy

French numeric: French colony dummy

Brit numeric: British colony dummy

WarDummy numeric: War dummy

LatAmerica numeric: Latin America dummy

SubSahara numeric; Sub-Sahara dummy

OutwarOr numeric: Outward Orientation

Area numeric: Area surface

PrScEnroll numeric: Primary school enrolment

LifeExp numeric: Life expectancy

GDP60 numeric: Initial GDP in 1960

Mining numeric: Fraction of GDP in mining

EcoOrg numeric: Degree of capitalism

YrsOpen numeric: Number of years having an open economy

Age numeric: Age
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Buddha numeric: Fraction Buddhist

Catholic numeric: Fraction Catholic

Confucian numeric: Fraction Confucian

EthnoL numeric: Ethnolinguistic fractionalization

Hindu numeric: Fraction Hindu

Jewish numeric: Fraction Jewish

Muslim numeric: Fraction Muslim

PrExports numeric: Primary exports 1970

Protestants numeric: Fraction Protestants

RuleofLaw numeric: Rule of law

Popg numeric: Population growth

WorkPop numeric: workers per inhabitant

LabForce numeric: Size of labor force

HighEnroll numeric: Higher education enrolment

PublEdupct numeric: Public education share

RevnCoup numeric: Revolutions and coups

PolRights numeric: Political rights

CivlLib numeric: Civil liberties

English numeric: Fraction speaking English

Foreign numeric: Fraction speaking foreign language

RFEXDist numeric: Exchange rate distortions

EquipInv numeric: Equipment investment

NequipInv numeric: Non-equipment investment

stdBMP numeric: stand. dev. of black market premium

BlMktPm numeric: black market premium

Source

Fernandez, C., Ley, E., and Steel, M. F. (2001b). Model Uncertainty in Cross-Country Growth
Regressions. Journal of Applied Econometrics, 16:563-576. Data set from https://warwick.ac.
uk/fac/sci/statistics/staff/academic-research/steel/steel_homepage/software.

A working paper version of Fernandez, Ley and Steel (2001) is available via https://econpapers.
repec.org/article/jaejapmet/v_3a16_3ay_3a2001_3ai_3a5_3ap_3a563-576.htm.

https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/steel/steel_homepage/software
https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/steel/steel_homepage/software
https://econpapers.repec.org/article/jaejapmet/v_3a16_3ay_3a2001_3ai_3a5_3ap_3a563-576.htm
https://econpapers.repec.org/article/jaejapmet/v_3a16_3ay_3a2001_3ai_3a5_3ap_3a563-576.htm
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density.bma Coefficient Marginal Posterior Densities

Description

Calculates the mixture marginal posterior densities for the coefficients from a BMA object and plots
them

Usage

## S3 method for class 'bma'
density(
x,
reg = NULL,
addons = "lemsz",
std.coefs = FALSE,
n = 300,
plot = TRUE,
hnbsteps = 30,
addons.lwd = 1.5,
...

)

Arguments

x A bma object (see bms) or a zlm object.

reg A scalar integer or character detailing which covariate’s coefficient should be
plotted. If reg=NULL (default), then all regressors are plotted one after the other,
waiting for user interaction.

addons character. Specifies which additional information should be added to the plot
via low-level commands (see ’Details’ below).

std.coefs logical. If TRUE then the posterior density is estimated for standardized coeffi-
cients (representing the case where all variables have mean zero and standard
deviation 1) - default is FALSE.

n numeric. the number of equally spaced points at which the density is to be
estimated.

plot logical. If TRUE (default), the density is plotted; if FALSE then density.bma
only returns the estimated posterior densities without plotting.

hnbsteps even integer, default 30. The number of numerical integration steps to be used in
case of a hyper-g prior (cf. argument g in bms). Increase this number to increase
accuracy.

addons.lwd scalar, default 1.5. Line width to be used for the low-level plotting commands
specified by addons. Cf. argument lwd in par

... Additional arguments for plot.default with sensible defaults
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Details

The argument addons specifies what additional information should be added to the plot(s) via the
low-level commands lines and legend:
"e" for the posterior expected value (EV) of coefficients conditional on inclusion (see argument
exact=TRUE in coef.bma),
"s" for 2 times posterior standard deviation (SD) bounds,
"m" for the posterior median,
"b" for posterior expected values of the individual models whom the density is averaged over,
"E" for posterior EV under MCMC frequencies (see argument exact=FALSE in coef.bma),
"S" for the corresponding SD bounds (MCMC),
"p" for plotting the Posterior Inclusion Probability above the density plot,
"l" for including a legend, "z" for a zero line, "g" for adding a grid

Any combination of these letters will give the desired result. Use addons="" for not using any of
these.
In case of density.zlm, only the letters e, s, l, z, and g will have an effect.

Value

The function returns a list containing objects of the class density detailing the marginal posterior
densities for each coefficient provided in reg.
In case of density.zlm, simple marginal posterior coefficient densities are computed, while density.bma
calculates there mixtures over models according to posterior model probabilities.
These densities contain only the density points apart from the origin. (see ’Note’ below)

As long as plot=TRUE, the densities are plotted too. Note that (for density.bma) if the posterior
inclusion probability of a covariate is zero, then it will not be plotted, and the returned density will
be list(x=numeric(n),y=numeric(n)).

Note

The computed marginal posterior densities from density.bma are a Bayesian Model Averaging
mixture of the marginal posterior densities of the individual models. The accuracy of the result
therefore depends on the number of ’best’ models contained in x (cf. argument nmodel in bms).

The marginal posterior density can be interpreted as ’conditional on inclusion’: If the posterior
inclusion probability of a variable is smaller than one, then some of its posterior density is Dirac
at zero. Therefore the integral of the returned density vector adds up to the posterior inclusion
probability, i.e. the probability that the coefficient is not zero.

Correspondingly, the posterior EV and SD specified by addons="es" are based on ’best’ model
likelihoods (’exact’) and are conditional on inclusion. They correspond to the results from command
coef.bma(x,exact=TRUE,condi.coef=TRUE,order.by.pip=FALSE) (cf. the example below).

The low-level commands enacted by the argument addons rely on colors of the palette: color 2
for "e" and "s", color 3 for "m", color 8 for "b", color 4 for "E" and "S". The default colors may
be changed by a call to palette.

Up to BMS version 0.3.0, density.bma may only cope with built-in gpriors, not with any user-
defined priors.
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See Also

quantile.coef.density for extracting quantiles, coef.bma for similar concepts, bms for creating
bma objects

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)
mm=bms(datafls)

density(mm,reg="SubSahara")
density(mm,reg=7,addons="lbz")
density(mm,1:9)
density(mm,reg=2,addons="zgSE",addons.lwd=2,std.coefs=TRUE)

# plot the posterior density only for the very best model
density(mm[1],reg=1,addons="esz")

#using the calculated density for other purposes...
dd=density(mm,reg="SubSahara")
plot(dd)

dd_list=density(mm,reg=1:3,plot=FALSE,n=400)
plot(dd_list[[1]])

#Note that the shown density is only the part that is not zero
dd=density(mm,reg="Abslat",addons="esl")
pip_Abslat=sum(dd$y)*diff(dd$x)[1]

#this pip and the EV conform to what is done by the follwing command
coef(mm,exact=TRUE,condi.coef=TRUE)["Abslat",]

estimates.bma Posterior Inclusion Probabilities and Coefficients from a ’bma’ Object

Description

Returns a matrix with aggregate covariate-specific Bayesian model Averaging: posterior inclusion
probabilites (PIP), post. expected values and standard deviations of coefficients, as well as sign
probabilites

http://bms.zeugner.eu
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Usage

estimates.bma(
bmao,
exact = FALSE,
order.by.pip = TRUE,
include.constant = FALSE,
incl.possign = TRUE,
std.coefs = FALSE,
condi.coef = FALSE

)

## S3 method for class 'bma'
coef(
object,
exact = FALSE,
order.by.pip = TRUE,
include.constant = FALSE,
incl.possign = TRUE,
std.coefs = FALSE,
condi.coef = FALSE,
...

)

Arguments

exact if exact=FALSE, then PIPs, coefficients, etc. will be based on aggregate in-
formation from the sampling chain with posterior model distributions based on
MCMC frequencies (except in case of enumeration - cf. ’Details’);
if exact=TRUE, estimates will be based on the nmodel best models encountered
by the sampling chain, with the posterior model distribution based on their exact
marginal likelihoods - cf. ’Details’ below.

order.by.pip order.by.pip=TRUE orders the resulting matrix according to posterior inclusion
probabilites, order.by.pip=FALSE ranks them according to the original data
(order of the covariates as in provided in X.data to bms), default TRUE

include.constant

If include.constant=TRUE then the resulting matrix includes the expected
value of the constant in its last row. Default FALSE

incl.possign If incl.possign=FALSE, then the sign probabilites column (cf. ’Values’ below)
is omitted from the result. Default TRUE

std.coefs If std.coefs=TRUE then the expected values and standard deviations are re-
turned in standardized form, i.e. as if the original data all had mean zero and
variance 1. If std.coefs=FALSE (default) then both expected values and stan-
dard deviations are returned ’as is’.

condi.coef If condi.coef=FALSE (default) then coefficients βi and standard deviations are
unconditional posterior expected values, as in standard model averaging; if condi.coef=FALSE
then they are given as conditional on inclusion (equivalent to βi/PIPi).

object, bmao a ’bma’ object (cf. bms)
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... further arguments for other coef methods

Details

More on the argument exact:
In case the argument exact=TRUE, the PIPs, coefficient statistics and conditional sign probabilities
are computed on the basis of the (500) best models the sampling chain encountered (cf. argument
nmodel in bms). Here, the weights for Bayesian model averaging (BMA) are the posterior marginal
likelihoods of these best models.
In case exact=FALSE, then these statistics are based on all accepted models (except burn-ins): If
mcmc="enumerate" then this are simply all models of the traversed model space, with their marginal
likelihoods providing the weights for BMA.
If, however, the bma object bmao was based on an MCMC sampler (e.g. when bms argument
mcmc="bd"), then BMA statistics are computed differently: In contrast to above, the weights for
BMA are MCMC frequencies, i.e. how often the respective models were encountered by the MCMC
sampler. (cf. a comparison of MCMC frequencies and marginal likelihoods for the best models via
the function pmp.bma).

Value

A matrix with five columns (or four if incl.possign=FALSE)

Column ’PIP’ Posterior inclusion probabilities
∑

p(γ|i ∈ γ, Y )/sump(γ|Y )

Column ’Post Mean’

posterior expected value of coefficients, unconditional E(β|Y ) =
∑

p(γ|Y )E(β|γ, Y ),
where E(βi|γ, i /∈ γ, Y ) = 0 if condi.coef=FALSE, or conditional on inclusion
(E(β|Y )/

∑
p(γ|Y, i ∈ γ) ) if condi.coef=TRUE

Column ’Post SD’

posterior standard deviation of coefficients, unconditional or conditional on in-
clusion, depending on condi.coef

Column ’Cond.Pos.Sign’

The ratio of how often the coefficients’ expected values were positive condi-
tional on inclusion. (over all visited models in case exact=FALSE, over the best
models in case exact=TRUE)

Column ’Idx’ the original order of covariates as the were used for sampling. (if included, the
constant has index 0)

See Also

bms for creating bma objects, pmp.bma for comparing MCMC frequencies and marginal likelihoods.

Check http://bms.zeugner.eu for additional help.

Examples

#sample, with keeping the best 200 models:
data(datafls)
mm=bms(datafls,burn=1000,iter=5000,nmodel=200)

#standard BMA PIPs and coefficients from the MCMC sampling chain, based on

http://bms.zeugner.eu
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# ...how frequently the models were drawn
coef(mm)

#standardized coefficients, ordered by index
coef(mm,std.coefs=TRUE,order.by.pip=FALSE)

#coefficients conditional on inclusion:
coef(mm,condi.coef=TRUE)

#same as
ests=coef(mm,condi.coef=FALSE)
ests[,2]/ests[,1]

#PIPs, coefficients, and signs based on the best 200 models
estimates.bma(mm,exact=TRUE)

#... and based on the 50 best models
coef(mm[1:50],exact=TRUE)

f21hyper Gaussian Hypergeometric Function F(a,b,c,z)

Description

Computes the value of a Gaussian hypergeometric function F (a, b, c, z) for −1 ≤ z ≤ 1 and
a, b, c ≥ 0

Usage

f21hyper(a, b, c, z)

Arguments

a The parameter a of the Gaussian hypergeometric function, must be a positive
scalar here

b The parameter b of the Gaussian hypergeometric function, must be a positive
scalar here

c The parameter c of the Gaussian hypergeometric function, must be a positive
scalar here

z The parameter z of the Gaussian hypergeometric function, must be between -1
and 1 here

Details

The function f21hyper complements the analysis of the ’hyper-g prior’ introduced by Liang et al.
(2008).
For parameter values, compare cf. https://en.wikipedia.org/wiki/Hypergeometric_function.

https://en.wikipedia.org/wiki/Hypergeometric_function
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Value

The value of the Gaussian hypergeometric function F (a, b, c, z)

Note

This function is a simple wrapper function of sped-up code that is intended for sporadic application
by the user; it is neither efficient nor general; for a more general version cf. the package ’hypergeo’

References

Liang F., Paulo R., Molina G., Clyde M., Berger J.(2008): Mixtures of g-priors for Bayesian vari-
able selection. J. Am. Statist. Assoc. 103, p. 410-423

https://en.wikipedia.org/wiki/Hypergeometric_function

See Also

package hypergeo for a more proficient implementation.

Check http://bms.zeugner.eu for additional help.

Examples

f21hyper(30,1,20,.8) #returns about 165.8197

f21hyper(30,10,20,0) #returns one

f21hyper(10,15,20,-0.1) # returns about 0.4872972

fullmodel.ssq OLS Statistics for the Full Model Including All Potential Covariates

Description

A utility function for reference: Returns a list with R2 and sum of squares for the OLS model
encompassing all potential covariates that are included in a bma object.

Usage

fullmodel.ssq(yX.data)

Arguments

yX.data a bma object (cf. bms) - alternatively a data.frame or matrix whose first column
is the dependent variable

https://en.wikipedia.org/wiki/Hypergeometric_function
http://bms.zeugner.eu
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Value

Returns a list with some basic OLS statistics

R2 The R-squared of the full model

ymy The sum of squares of residuals of the full model

ypy The explained sum of squares of the full model

yty The sum of squares of the (demeaned) dependent variable

Fstat The F-statistic of the full model

Note

This function is just for quick comparison; for proper OLS estimation consider lm

See Also

bms for creating bma objects, lm for OLS estimation

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)
mm=bms(datafls)

fullmodel.ssq(mm)

#equivalent:
fullmodel.ssq(datafls)

gdensity Posterior Density of the Shrinkage Factor

Description

Calculates the mixture marginal posterior density for the shrinkage factor (g/(1+g)) from a BMA
object under the hyper-g prior and plots it

Usage

gdensity(x, n = 512, plot = TRUE, addons = "zles", addons.lwd = 1.5, ...)

http://bms.zeugner.eu
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Arguments

x A bma object (see bms).

n The integer number of equally spaced points at which the density is to be esti-
mated. see ’Details’ below

plot logical. If TRUE (default), the density is plotted; if FALSE then gdensity only
returns the estimated posterior density without plotting.

addons character, defaulting to "zles". Specifies which additional information should
be added to the plot via low-level commands (see ’Details’ below).

addons.lwd scalar, default 1.5. Line width to be used for the low-level plotting commands
specified by addons. Cf. argument lwd in par

... Additional arguments for plot.default with sensible defaults

Details

The function gdensity estimates and plots the posterior density for the shrinkage factor g/(1 + g)
This is evidently only possible if the shrinkage factor if not fixed, i.e. if the bma object x was
estimated with a hyper-g prior - cf. argument g in bms
The density is based only on the best models retained in the bma object x, cf. argument nmodel in
bms
A note on argument n: The points at which the density is estimated start at max(0, E − 5 ∗ SD),
where E and SD are the expected value and standard deviation of the shrinkage factor, respectively.
For plotting the entire domain (0, 1) use xlim=c(0,1) as an argument for gdensity.

The argument addons specifies what additional information should be added to the plot(s) via the
low-level commands lines and legend:
"e" for the posterior expected value (EV) of the shrinkage factor,
"s" for 2 times posterior standard deviation (SD) bounds,
"m" for the posterior median,
"f" for posterior expected values of the individual models whom the density is averaged over,
"z" for a zero line, "l" for including a legend
The following two are only possible if the bma object collected statistics on shrinkage, cf. argument
g.stats in bms "E" for posterior expected value under MCMC frequencies (see argument exact in
coef.bma),
"S" for the corresponding 2 times standard deviation bounds (MCMC),

Any combination of these letters will give the desired result. Use addons="" for not using any of
these.

Value

gdensity returns an object of the class density detailing the posterior mixture density of the
shrinkage factor.

Note

The computed marginal posterior density is a Bayesian Model Averaging mixture of the marginal
posterior densities of the shrinkage factor under individual models. The accuracy of the result
therefore depends on the number of ’best’ models contained in x (cf. argument nmodel in bms).
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Correspondingly, the posterior EV and SD specified by addons="es" are based on ’best’ model
likelihoods (’exact’) and are conditional on inclusion.

The low-level commands enacted by the argument addons rely on colors of the palette: color 2
for "e" and "s", color 3 for "m", color 8 for "f", color 4 for "E" and "S". The default colors may
be changed by a call to palette.

See Also

density.bma for computing coefficient densities, bms for creating bma objects, density for the
general method

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)
mm=bms(datafls,g="hyper=UIP")

gdensity(mm) # default plotting

# the grey bars represent expected shrinkage factors of the individual models
gdensity(mm,addons="lzfes")

# #plotting the median 'm' and the posterior mean and bounds based on MCMC results:
gdensity(mm,addons="zSEm",addons.lwd=2)

# plot the posterior shrinkage density only for the very best model
gdensity(mm[1],addons="esz")

#using the calculated density for other purposes...
dd=gdensity(mm,plot=FALSE)
plot(dd)

gprior-class Class "gprior"

Description

An object pertaining to a coefficient prior

Objects from the Class

A gprior object holds descriptions and subfunctions pertaining to coefficient priors. Functions such
as bms or zlm rely on this class to ’convert’ the output of OLS results into posterior expressions for
a Bayesian Linear Model. Post-processing functions such as density.bma also resort to gprior
objects.

http://bms.zeugner.eu
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There are currently three coefficient prior structures built into the BMS package, generated by the
following functions (cf. Feldkircher and Zeugner, 2009) :
gprior.constg.init: creates a Zellner’s g-prior object with constant g.
gprior.eblocal.init: creates an Empricial Bayes Zellner’s g-prior.
gprior.hyperg.init: creates a hyper g-prior with a Beta-prior on the shrinkage parameter.
The following describes the necessary slots

Author(s)

Martin Feldkircher and Stefan Zeugner

References

Feldkircher, M. and S. Zeugner (2009): Benchmark Priors Revisited: On Adaptive Shrinkage and
the Supermodel Effect in Bayesian Model Averaging, IMF Working Paper 09/202.

See Also

bms and zlm for creating bma or zlm objects.
Check the appendix of vignette(BMS) for a more detailed description of built-in priors.
Check http://bms.zeugner.eu/custompriors.php for examples.

Examples

data(datafls)
mm1=bms(datafls[,1:10], g="EBL")
gg=mm1$gprior.info # is the g-prior object, augmented with some posterior statistics

mm2=bms(datafls[,1:10], g=gg) #produces the same result

mm3=bms(datafls[,1:10], g=BMS:::.gprior.eblocal.init)
#this passes BMS's internal Empirical Bayes g-prior object as the coefficient prior
# - any other obejct might be used as well

hex2bin Converting Binary Code to and from Hexadecimal Code

Description

A simple-to-use function for converting a logical (’binary’) vector into hex code and reverse.

Usage

hex2bin(hexcode)

bin2hex(binvec)

http://bms.zeugner.eu/custompriors.php
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Arguments

hexcode a single-element character denoting an integer in hexcode (admissible character:
0 to 9, ato f)

binvec a logical vector (alternatively a vector coercible into logical)

Details

The argument is an integer in binary form (such as "101"), provided as a logical (c(T,F,T)) or
numeric vector (c(1,0,1)).
bin2hex then returns a character denoting this number in hexcode (in this case "5").

The function hex2bin does the reverse operation, e.g. hex2bin("5") gives (c(1,0,1)).

Value

bin2hex returns a single element character; hex2bin returns a numeric vector equivalent to a logical
vector

See Also

hex2bin for converting hexcode into binary vectors, format.hexmode for a related R function.

Check http://bms.zeugner.eu for additional help.

Examples

bin2hex(c(TRUE,FALSE,TRUE,FALSE,TRUE,TRUE))
bin2hex(c(1,0,1,0,1,1))
hex2bin("b8a")
bin2hex(hex2bin("b8a"))

image.bma Plot Signs of Best Models

Description

Plots a grid with signs and inclusion of coefficients vs. posterior model probabilities for the best
models in a ’bma’ object:

Usage

## S3 method for class 'bma'
image(
x,
yprop2pip = FALSE,
order.by.pip = TRUE,
do.par = TRUE,
do.grid = TRUE,

http://bms.zeugner.eu
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do.axis = TRUE,
cex.axis = 1,
...

)

Arguments

x a list of class bma (cf. bms for further details)

yprop2pip if yprop2pip=TRUE then the grid lines on the vertical axis are scaled according
to the coefficients’ inclusion probabilites.
If yprop2pip=FALSE (default) then the grid lines on the vertical axis are equidis-
tant.

order.by.pip with order.by.pip=TRUE (default), coefficients are sorted according to their
posterior inclusion probabilites along the vertical axis. If order.by.pip=FALSE
they are ordered as they were provided to bms.

do.par Defaults to do.par=TRUE, which adjusts par()$mar for optimal positioning. Set
do.par=FALSE for customizing par yourself.

do.grid do.grid=TRUE (default) plots grid lines among the chart’s boxes, akin to the low
level command grid. do.grid=FALSE omits the grid lines.

do.axis do.axis=TRUE (default) plots axis tick marks and labels (cf. axis). do.axis=FALSE
omits them.

cex.axis font size for the axes (cf. axis), defaults to 1

... Parameters to be passed on to image.default.

Details

Under default settings, blue corresponds to positive sign, red to a negative sign, white to non-
inclusion.

See Also

coef.bma for the coefficients in matrix form, bms for creating ’bma’ objects.

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)

model=bms(datafls,nmodel=200)

#plot all models
image(model,order.by.pip=FALSE)
image(model,order.by.pip=TRUE,cex.axis=.8)

#plot best 7 models, with other colors
image(model[1:7],yprop2pip=TRUE,col=c("black","lightgrey"))

http://bms.zeugner.eu
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info.bma Summary Statistics for a ’bma’ Object

Description

Returns a vector with summary statistics for a ’bma’ object

Usage

info.bma(bmao)

## S3 method for class 'bma'
summary(object, ...)

Arguments

bmao same as object

object a list/object of class ’bma’ that typically results from the function bms (see bms
for details)

... further arguments passed to or from other methods

Details

info.bma is equivalent to summary.bma, its argument bmao conforms to the argument object

Value

A character vector summarizing the results of a call to bms

Mean no. of Regressors

the posterior mean of model size

Draws the number of iterations (ex burn-ins)

Burnins the number of burn-in iterations

Time the time spent on iterating through the model space
No. of models visited

the number of times a model was accepted (including burn-ins)

Modelspace the total model space 2K

list(list("2^K"))

the total model space 2K

Percentage visited

No. of models visited/Modelspace*100

Percentage Topmodels

number of times the best models were drawn in percent of Draws

Corr. PMP the correlation between the MCMC frequencies of the best models (the number
of times they were drawn) and their marginal likelihoods.
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No. Obs. Number of observations

Model Prior a character conforming to the argument mprior of bms, and the expected prior
model size

g-prior a character corresponding to argument g of function bms

Shrinkage-Stats

Posterior expected value und standard deviation (if applicable) of the shrinkage
factor. Only included if argument g.stats of function bms was set to TRUE

Note

All of the above statistics can also be directly extracted from the bma object (bmao). Therefore
summary.bma only returns a character vector.

See Also

bms and c.bma for functions creating bma objects, print.bma makes use of summary.bma.

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)

m_fixed=bms(datafls,burn=1000,iter=3000,user.int=FALSE, )
summary(m_fixed)

m_ebl=bms(datafls,burn=1000,iter=3000,user.int=FALSE, g="EBL",g.stats=TRUE)
info.bma(m_ebl)

is.bma Tests for a ’bma’ Object

Description

tests for objects of class "bma"

Usage

is.bma(bmao)

Arguments

bmao a ’bma’ object: see ’value’

Value

Returns TRUE if bmao is of class ’bma’, FALSE otherwise.

http://bms.zeugner.eu
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See Also

’Output’ in bms for the structure of a ’bma’ object

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)
mm=bms(datafls,burn=1000, iter=4000)
is.bma(mm)

lps.bma Log Predictive Score

Description

Computes the Log Predictive Score to evaluate a forecast based on a bma object

Usage

lps.bma(object, realized.y, newdata = NULL)

Arguments

object an object of class pred.density, or class bma (cf. bms), or class zlm

realized.y a vector with realized values of the dependent variables to be plotted in addition
to the predictive density, must have its length conforming to newdata

newdata Needs to be provided if object is not of class pred.density: a data.frame,
matrix or vector containing variables with which to predict.

Details

The log predictive score is an indicator for the likelihood of several forecasts.
It is defined as minus the arithmethic mean of the logarithms of the point densities for realized.y
given newdata.
Note that in most cases is more efficient to first compute the predictive density object via a call to
pred.density and only then pass the result on to lps.bma.

Value

A scalar denoting the log predictive score

See Also

pred.density for constructing predictive densities, bms for creating bma objects, density.bma for
plotting coefficient densities

Check http://bms.zeugner.eu for additional help.

http://bms.zeugner.eu
http://bms.zeugner.eu
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Examples

data(datafls)
mm=bms(datafls,user.int=FALSE,nmodel=100)

#LPS for actual values under the used data (static forecast)
lps.bma(mm, realized.y=datafls[,1] , newdata=datafls[,-1])

#the same result via predicitve.density
pd=pred.density(mm, newdata=datafls[,-1])
lps.bma(pd,realized.y=datafls[,1])

# similarly for a linear model (not BMA)
zz = zlm(datafls)
lps.bma(zz, realized.y=datafls[,1] , newdata=datafls[,-1])

mprior-class Class "mprior"

Description

An object pertaining to a BMA model prior

Objects from the Class

An mprior object holds descriptions and subfunctions pertaining to model priors. The BMA func-
tions bms and post-processing functions rely on this class.
There are currently five model prior structures built into the BMS package, generated by the fol-
lowing functions (cf. the appendix of vignette(BMS)):
mprior.uniform.init: creates a uniform model prior object.
mprior.fixedt.init: creates the popular binomial model prior object with common inclusion
probabilities.
mprior.randomt.init: creates a beta-binomial model prior object.
mprior.pip.init: creates a binomial model prior object that allows for defining individual prior
inclusion probabilities.
mprior.customk.init: creates a model prior object that allows for defining a custom prior for
each model parameter size.
The following describes the necessary slots:

Author(s)

Martin Feldkircher and Stefan Zeugner

See Also

bms for creating bma objects.
Check the appendix of vignette(BMS) for a more detailed description of built-in priors.
Check http://bms.zeugner.eu/custompriors.php for examples.

http://bms.zeugner.eu/custompriors.php


32 plot.bma

plot.bma Plot Posterior Model Size and Model Probabilities

Description

Produces a combined plot: upper row shows prior and posterior model size distribution, lower row
shows posterior model probabilities for the best models

Usage

## S3 method for class 'bma'
plot(x, ...)

Arguments

x an object of class ’bma’

... additional arguments for matplot

Value

combines the plotting functions plotModelsize and plotConv

Note

The upper plot shows the prior and posterior distribution of model sizes (plotModelsize).
The lower plot is an indicator of how well the bma object has converged (plotConv). and Paul

See Also

plotModelsize and plotConv

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)
mm=bms(datafls,user.int=FALSE)

plot(mm)

http://bms.zeugner.eu
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plotComp Compare Two or More bma Objects

Description

Plots a comparison of posterior inclusion probabilites, coefficients or their standard deviation be-
tween various bma objects

Usage

plotComp(
...,
varNr = NULL,
comp = "PIP",
exact = FALSE,
include.legend = TRUE,
add.grid = TRUE,
do.par = TRUE,
cex.xaxis = 0.8

)

Arguments

... one or more objects of class ’bma’ to be compared. plotComp passes on any
other parameters in ...{} to matplot.

varNr optionally, covariate indices to be included in the plot, can be either integer
vector or character vector - see examples

comp a character denoting what should be compared: comp="PIP" (default) for pos-
terior inclusion probabilities, comp="Post Mean" for coefficients, comp="Post
SD" for their standard deviations, comp="Std Mean" or standardized coefficients,
or comp="Std SD" for standardized standard deviations

exact if FALSE, the statistics to be compared are based on aggregate bma statistics, if
TRUE, they are based solely on the best models retained in the bma objects

include.legend whether to include a default legend in the plot (custom legends can be added
with the command legend)

add.grid whether to add a grid to the plot

do.par whether to adjust par("mar") in order to fit in the tick labels on the x-axis

cex.xaxis font size scaling parameter for the x-axis - cf. argument cex.axis in par

See Also

coef.bma for the underlying function

Check http://bms.zeugner.eu for additional help.

http://bms.zeugner.eu
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Examples

## sample two simple bma objects
data(datafls)
mm1=bms(datafls[,1:15])
mm2=bms(datafls[,1:15])

#compare PIPs
plotComp(mm1,mm2)

#compare standardized coefficeitns
plotComp(mm1,mm2,comp="Std Mean")

#...based on the lieklihoods of best models
plotComp(mm1,mm2,comp="Std Mean",exact=TRUE)

#plot only PIPs for first four covariates
plotComp(mm1,mm2,varNr=1:4, col=c("black","red"))

#plot only coefficients for covariates 'GDP60 ' and 'LifeExp'
plotComp(mm1,mm2,varNr=c("GDP60", "LifeExp"),comp="Post Mean")

plotConv Plot Convergence of BMA Sampler

Description

Plots the posterior model probabilites based on 1) marginal likelihoods and 2) MCMC frequencies
for the best models in a ’bma’ object and details the sampler’s convergence by their correlation

Usage

plotConv(bmao, include.legend = TRUE, add.grid = TRUE, ...)

Arguments

bmao an object of class ’bma’ - see bms

include.legend whether to include a legend in the plot

add.grid whether to include a grid in the plot

... other parameters for matplot
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Details

A call to bms with a MCMC sampler (e.g. bms(datafls,mcmc="bd",nmodel=100) uses a Metropolis-
Hastings algorithm to sample through the model space: the frequency of how often models are
drawn converges to the distribution of their posterior marginal likelihoods.
While sampling, each ’bma’ object stores the best models encountered by its sampling chain with
their marginal likelihood and their MCMC frequencies.
plotConv compares the MCMC frequencies to marginal likelihoods, and thus visualizes how well
the sampler has converged.

Note

plotConv is also used by plot.bma

See Also

pmp.bma for posterior model probabilites based on the two concepts, bms for creating objects of
class ’bma’

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)
mm=bms(datafls[,1:12],user.int=FALSE)

plotConv(mm)

#is similar to
matplot(pmp.bma(mm),type="l")

plotModelsize Plot Model Size Distribution

Description

Plots posterior and prior model size distribution

Usage

plotModelsize(
bmao,
exact = FALSE,
ksubset = NULL,
include.legend = TRUE,
do.grid = TRUE,
...

)

http://bms.zeugner.eu
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Arguments

bmao a ’bma’ object (cf. bms)

exact if TRUE, then the posterior model distribution is based on the best models of bmao
and their marginal likelihoods;
if FALSE (default) then the distribution is based on all encountered models and
their MCMC frequencies (cf. ’Details’ in coef.bma)

ksubset integer vector detailing for which model sizes the plot should be done

include.legend if TRUE, a small legend is included via the low-level command legend

do.grid if TRUE, a grid is added to the plot (with a simple grid()).

... parameters passed on to matplot with sensible defaults

Value

As a default, plotModelsize plots the posterior model size distribution as a blue line, and the prior
model distribution as a dashed red line.
In addition, it returns a list with the following elements:

mean The posterior expected value of model size

var The variance of the posterior model size distribution

dens A vector detailing the posterior model size distribution from model size 0 (the
first element) to K (the last element)

See Also

See also bms, image.bma, density.bma, plotConv

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)
mm=bms(datafls,burn=1500, iter=5000, nmodel=200,mprior="fixed",mprior.size=6)

#plot Nb.1 based on aggregate results
postdist= plotModelsize(mm)

#plot based only on 30 best models
plotModelsize(mm[1:30],exact=TRUE,include.legend=FALSE)

#plot based on all best models, but showing distribution only for model sizes 1 to 20
plotModelsize(mm,exact=TRUE,ksubset=1:20)

# create a plot similar to plot Nb. 1
plot(postdist$dens,type="l")
lines(mm$mprior.info$mp.Kdist)

http://bms.zeugner.eu
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pmp.bma Posterior Model Probabilities

Description

Returns the posterior model probabilites for the best models encountered by a ’bma’ object

Usage

pmp.bma(bmao, oldstyle = FALSE)

Arguments

bmao A bma object (see argument nmodel in bms), alternatively an object of class
topmod

oldstyle For normal use, leave this at FALSE. It is an argument for compatibility with
older BMS versions - see section ’Notes’

Details

A call to bms with an MCMC sampler (e.g. bms(datafls,mcmc="bd",nmodel=100) uses a Metropolis-
Hastings algorithm to sample through the model space - and the frequency of how often models are
drawn converges to the distribution of their posterior marginal likelihoods. While sampling, each
’bma’ object stores the best models encountered by its sampling chain with their marginal likelihood
and their MCMC frequencies.

pmp.bma then allows for comparing the posterior model probabilities (PMPs) for the two different
methods, similar to plotConv. It calculates the PMPs based on marginal likelihoods (first column)
and the PMPs based on MCMC frequencies (second column) for the best x models stored in the
bma object.

The correlation of the two columns is an indicator of how well the MCMC sampler has converged
to the actual PMP distribution - it is therefore also given in the output of summary.bma.

The second column is slightly different in case the bms argument mcmc was set to mcmc="enumeration":
In this case, the second column is also based on marginal likelihoods. The correlation between the
two columns is therefore one.

Value

the result is a matrix, its row names describe the model binaries
There are two columns in the matrix:

PMP (Exact) posterior model probabilities based on the posterior likelihoods of the best mod-
els in bmao

PMP (MCMC) posterior model probabilities of the best models in bmao based on their MCMC
frequencies, relative to all models encountered by bmao - see ’Details’
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Note

The second column thus shows the PMPs of the best models relative to all models the call to bms has
sampled through (therefore typically the second column adds up to less than one). The first column
relates to the likelihoods of the best models, therefore it would add up to 1. In order estimate for
their marginal likelihoods with respect to the other models (the ones not retained in the best models),
these PMP aadding up to one are multiplied with the sum of PMP of the best models accroding to
MCMC frequencies. Therefore, the two columns have the same column sum.

CAUTION: In package versions up to BMS 0.2.5, the first column was indeed set always equal to
one. This behaviour can still be mimicked by setting oldstyle=TRUE.

See Also

plotConv for plotting pmp.bma, pmpmodel to obtain the PMP for any individual model, bms for
sampling bma objects

Check http://bms.zeugner.eu for additional help.

Examples

## sample BMA for growth dataset, MCMC sampler
data(datafls)
mm=bms(datafls[,1:10],nmodel=20, mcmc="bd")

## mmodel likelihoods and MCMC frequencies of best 20 models
print(mm$topmod)

pmp.bma(mm)
#first column: posterior model prob based on model likelihoods,
# relative to best models in 'mm'
#second column: posterior model prob based MCMC frequencies,
# relative to all models encountered by 'mm'

#consequently, first column adds up to one
#second column shows how much of the sampled model space is
# contained in the best models
colSums(pmp.bma(mm))

#correlation betwwen the two shows how well the sampler converged
cor(pmp.bma(mm)[,1],pmp.bma(mm)[,2])

#is the same as given in summary.bma
summary(mm)["Corr PMP"]

#plot the two model probabilites
plotConv(mm)

#equivalent to the following chart
plot(pmp.bma(mm)[,2], type="s")
lines(pmp.bma(mm)[,1],col=2)

http://bms.zeugner.eu
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#moreover, note how the first column is constructed
liks=exp(mm$top$lik())
liks/sum(liks)
pmp.bma(mm)[,1] #these two are equivalent

#the example above does not converge well,
#too few iterations and best models
# this is already better, but also not good
mm=bms(datafls[,1:10],burn=2000,iter=5000,nmodel=200)

# in case the sampler has been 'enumeration' instead of MCMC,
# then both matrix columns are of course equivalent
mm=bms(datafls[,1:10],nmodel=512,mcmc="enumeration")
cor(pmp.bma(mm)[,1],pmp.bma(mm)[,2])
colSums(pmp.bma(mm))

pmpmodel Posterior Model Probability for any Model

Description

Returns the posterior model probability for any model based on bma results

Usage

pmpmodel(bmao, model = numeric(0), exact = TRUE)

Arguments

bmao A bma object as created by bms.

model A model index - either variable names, or a logical with model binaries, or the
model hexcode (cf. hex2bin, or a numeric with positions of the variables to be
included.

exact If TRUE, then the resulting PMP is based on analytical model likelihoods (works
for any model).
If FALSE, the the resulting PMP is derived from MCMC frequencies (works only
for the null and fullmodel, as well as for models contained in bmao’s topmod
object.
If bmao is based on enumeration (cf. argument mcmc in bms, then exact does not
matter.
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Details

If the model as provided in model is the null or the full model, or is contained in bmao’s topmod
object (cf. argument nmodel in bms),
then the result is the same as in pmp.bma.
If not and exact=TRUE, then pmpmodel estimates the model based on comparing its marginal like-
lihood (times model prior) to the likelihoods in the topmod object and multiplying by their sum of
PMP according to MCMC frequencies,

Value

A scalar with (an estimate of) the posterior model probability for model

See Also

pmp.bma for similar functions

Check http://bms.zeugner.eu for additional help.

Examples

## sample BMA for growth dataset, enumeration sampler
data(datafls)
mm=bms(datafls[,1:10],nmodel=5)

#show the best 5 models:
pmp.bma(mm)
#first column: posterior model prob based on model likelihoods,
#second column: posterior model prob based MCMC frequencies,

### Different ways to get the same result: #########

#PMP of 2nd-best model (hex-code representation)
pmpmodel(mm,"00c")

#PMP of 2nd-best model (binary representation)
incls=as.logical(beta.draws.bma(mm)[,2])
pmpmodel(mm,incls)

#PMP of 2nd-best model (via variable names)
#names of regressors in model "00c":
names(datafls[,2:10])[incls]
pmpmodel(mm,c("SubSahara", "LatAmerica"))

#PMP of 2nd-best model (via positions)
pmpmodel(mm,c(6,7))

####PMP of another model #########
pmpmodel(mm,1:5)

http://bms.zeugner.eu
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post.var Posterior Variance and Deviance

Description

Returns posterior residual variance, deviance, or pseudo R-squared, according to the chosen prior
structure

Usage

post.var(object, exact = FALSE, ...)

Arguments

object A bma object (as produced by bms) or a zlm object.

exact When exact=FALSE, then deviance will be based on MCMC frequencies, if
exact=TRUE then it will be based on
analytical posterior model probabilities - cf. argument exact in coef.bma.

... further arguments passed to or from other methods

Details

post.var: Posterior residual variance as according to the prior definitions contained in object
post.pr2: A pseudo-R-squared corresponding to unity minus posterior variance over dependent
variance.
deviance.bma: returns the deviance of a bma model as returned from bms.
deviance.zlm: returns the deviance of a zlm model.

See Also

bms for creating bma objects and priors, zlm object.

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)

mm=bms(datafls[,1:10])
deviance(mm)/nrow(datafls) # is equivalent to
post.var(mm)

post.pr2(mm) # is equivalent to
1 - post.var(mm) / ( var(datafls[,1])*(1-1/nrow(datafls)) )

http://bms.zeugner.eu
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pred.density Predictive Densities for bma Objects

Description

Predictive densities for conditional forecasts

Usage

pred.density(object, newdata = NULL, n = 300, hnbsteps = 30, ...)

Arguments

object a bma object - see bms, alternativel a zlm object

newdata A data.frame, matrix or vector containing variables with which to predict.

n The integer number of equally spaced points at which the density is to be esti-
mated.

hnbsteps The number of numerical integration steps to be used in case of a hyper-g prior
(cf. argument g in bms). Increase this number to increase accuracy. Must be an
even integer.

... arguments to be passed on to plot.density.

Details

The predictive density is a mixture density based on the nmodels best models in a bma object (cf.
nmodel in bms).
The number of ’best models’ to retain is therefore vital and should be set quite high for accuracy.

Value

pred.density returns a list of class pred.density with the following elements

densities() a list whose elements each contain the estimated density for each forecasted
observation

fit a vector with the expected values of the predictions (the ’point forecasts’)

std.err a vector with the standard deviations of the predictions (the ’standard errors’)
dyf(realized.y, predict_index=NULL)

Returns the densities of realized response variables provided in realized.y.
If realized.y is a matrix, then each row corresponds to a forecast observation
in newdata
if not left empty, predict.index specifies to which observations in newdata the
realized.y should apply

lps(realized.y, predict_index=NULL)
Computes the log predictive score for the response varaible provided in realized.y
(cf. lps.bma) -
Note that the LPS equals minus the mean of the logarithmized results from dyf)
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plot((x, predict_index = NULL, addons = "eslz", realized.y = NULL,
addons.lwd = 1.5, ...)

the same as plot.pred.density

n The number of equally spaced points for which the density (under densities()
was computed.

nmodel The number of best models predictive densities are based upon.

call the call that created this pred.density object

Note

In BMS version 0.3.0, pred.density may only cope with built-in gpriors, not with any user-
defined priors.

See Also

predict.bma for simple point forecasts, plot.pred.density for plotting predictive densities,
lps.bma for calculating the log predictive score independently, quantile.pred.density for ex-
tracting quantiles

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)
mm=bms(datafls,user.int=FALSE)

#predictive densityfor two 'new' data points
pd=pred.density(mm,newdata=datafls[1:2,])

#fitted values based on best models, same as predict(mm, exact=TRUE)
pd$fit

#plot the density for the first forecast observation
plot(pd,1)

# the same plot ' naked'
plot(pd$densities()[[1]])

#predict density for the first forecast observation if the dep. variable is 0
pd$dyf(0,1)

#predict densities for both forecasts for the realizations 0 and 0.5
pd$dyf(rbind(c(0,.5),c(0,.5)))

# calc. Log Predictive Score if both forecasts are realized at 0:
lps.bma(pd,c(0,0))

http://bms.zeugner.eu
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predict.bma Predict Method for bma Objects

Description

Expected value of prediction based on ’bma’ object

Usage

## S3 method for class 'bma'
predict(object, newdata = NULL, exact = FALSE, topmodels = NULL, ...)

Arguments

object a bma object - see bms

newdata An optional data.frame, matrix or vector containing variables with which to pre-
dict. If omitted, then (the expected values of) the fitted values are returned.

exact If FALSE (default), then prediction is based on all models (i.e. on their MCMC
frequencies in case the bms parameter mcmc was set to an mcmc sampler.
If TRUE, then prediction is based on analytical likelihoods of the best models
retained in object - cf. bms parameter nmodel.

topmodels index of the models with whom to predict: for instance, topmodels=1 predicts
based solely on the best model, whereas topmodels=1:5 predicts based on a
combination of the five best models.
Note that setting topmodels triggers exact=TRUE.

... further arguments passed to or from other methods.

Value

A vector with (expected values of) fitted values.

See Also

coef.bma for obtaining coefficients, bms for creating bma objects, predict.lm for a comparable
function

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)
mm=bms(datafls,user.int=FALSE)

predict(mm) #fitted values based on MCM frequencies
predict(mm, exact=TRUE) #fitted values based on best models

predict(mm, newdata=1:41) #prediction based on MCMC frequencies

http://bms.zeugner.eu


predict.zlm 45

predict(mm, newdata=datafls[1,], exact=TRUE) #prediction based on a data.frame

# the following two are equivalent:
predict(mm, topmodels=1:10)
predict(mm[1:10], exact=TRUE)

predict.zlm Predict Method for zlm Linear Model

Description

Expected value (And standard errors) of predictions based on ’zlm’ linear Bayesian model under
Zellner’s g prior

Usage

## S3 method for class 'zlm'
predict(object, newdata = NULL, se.fit = FALSE, ...)

Arguments

object a zlm linear model object - see zlm

newdata An optional data.frame, matrix or vector containing variables with which to pre-
dict. If omitted, then (the expected values of) the fitted values are returned.

se.fit A switch indicating if the standard deviations for the predicted varaibles are
required.

... further arguments passed to or from other methods.

Value

A vector with (expected values of) fitted values.
If se.fit is TRUE, then the output is a list with the following elements:

fit a vector with the expected values of fitted values

std.err a vector with the standard deviations of fitted values

se.fit a vector with the standard errors without the residual scale akin to se.fit in
predict.lm

residual.scale The part from the standard deviations that involves the identity matrix. Note that
sqrt(se.fit^2+residual.scale^2) yields std.err.

See Also

bms for creating zlm objects, predict.lm for a comparable function, predict.bma for predicting
with bma objects

Check http://bms.zeugner.eu for additional help.

http://bms.zeugner.eu
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Examples

data(datafls)
mm=zlm(datafls,g="EBL")

predict(mm) #fitted values
predict(mm, newdata=1:41) #prediction based on a 'new data point'

#prediction based on a 'new data point', with 'standard errors'
predict(mm, newdata=datafls[1,], se.fit=TRUE)

print.topmod Printing topmod Objects

Description

Print method for objects of class ’topmod’, typically the best models stored in a ’bma’ object

Usage

## S3 method for class 'topmod'
print(x, ...)

Arguments

x an object of class ’topmod’ - see topmod

... additional arguments passed to link{print}

Details

See pmp.bma for an explanation of likelihood vs. MCMC frequency concepts

Value

if x contains more than one model, then the function returns a 2-column matrix:

Row Names show the model binaries in hexcode
Column ’Marg.Log.Lik’

shows the marginal log-likelihoods of the models in x

Column ’MCMC Freq’

shows the MCMC frequencies of the models in x

if x contains only one model, then more detailed information is shown for this model:

first line ’Model Index’ provides the model binary in hexcode, ’Marg.Log.Lik’ its marginal
log likelhood, ’Sampled Freq.’ how often it was accepted (function ncount()
in topmod)
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Estimates first column: covariate indices included in the model, second column: posterior
expected value of the coefficients, third column: their posterior standard devia-
tions (excluded if no coefficients were stored in the topmod object - cf. argument
bbeta in topmod)

Included Covariates

the model binary
Additional Statistics

any custom additional statistics saved with the model

See Also

topmod for creating topmod objects, bms for their typical use, pmp.bma for comparing posterior
model probabilities

Check http://bms.zeugner.eu for additional help.

Examples

# do some small-scale BMA for demonstration
data(datafls)
mm=bms(datafls[,1:10],nmodel=20)

#print info on the best 20 models
print(mm$topmod)
print(mm$topmod,digits=10)

#equivalent:
cbind(mm$topmod$lik(),mm$topmod$ncount())

#now print info only for the second-best model:
print(mm$topmod[2])

#compare 'Included Covariates' to:
topmodels.bma(mm[2])

#and to
as.vector(mm$topmod[2]$bool_binary())

quantile.density Extract Quantiles from ’density’ Objects

Description

Quantiles for objects of class "density", "pred.density" or "coef.density"

http://bms.zeugner.eu
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Usage

## S3 method for class 'density'
quantile(x, probs = seq(0.25, 0.75, 0.25), names = TRUE, normalize = TRUE, ...)

## S3 method for class 'coef.density'
quantile(x, probs = seq(0.25, 0.75, 0.25), names = TRUE, ...)

## S3 method for class 'pred.density'
quantile(x, probs = seq(0.25, 0.75, 0.25), names = TRUE, ...)

Arguments

x a object of class pred.density, coef.density, density, or a list of densities.

probs numeric vector of probabilities with values in [0,1] - elements very close to the
boundaries return Inf or -Inf

names logical; if TRUE, the result has a names attribute, resp. a rownames and colnames
attributes. Set to FALSE for speedup with many probs.

normalize logical; if TRUE then the values in x$y are multiplied with a factor such that their
integral is equal to one.

... further arguments passed to or from other methods.

Details

The methods quantile.coef.density and quantile.pred.density both apply quantile.density
to densities nested with object of class coef.density or pred.density.
The function quantile.density applies generically to the built-in class density (as least for ver-
sions where there is no such method in the pre-configured packages).
Note that quantile.density relies on trapezoidal integration in order to compute the cumulative
densities necessary for the calculation of quantiles.

Value

If x is of class density (or a list with exactly one element), a vector with quantiles.
If x is a list of densities with more than one element (e.g. as resulting from pred.density or
coef.density), then the output is a matrix of quantiles, with each matrix row corresponding to the
respective density.

Author(s)

Stefan Zeugner

See Also

quantile.default for a comparable function, pred.density and density.bma for the BMA-
specific objects.

Check http://bms.zeugner.eu for additional help.

http://bms.zeugner.eu
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Examples

data(datafls)
mm = bms(datafls[1:70,], user.int=FALSE)

#predict last two observations with preceding 70 obs:
pmm = pred.density(mm, newdata=datafls[71:72,], plot=FALSE)
#'standard error' quantiles
quantile(pmm, c(.05, .95))

#Posterior density for Coefficient of "GDP60"
cmm = density(mm, reg="GDP60", plot=FALSE)
quantile(cmm, probs=c(.05, .95))

#application to generic density:
dd1 = density(rnorm(1000))
quantile(dd1)

## Not run:
#application to list of densities:
quantile.density( list(density(rnorm(1000)), density(rnorm(1000))) )

## End(Not run)

summary.zlm Summarizing Linear Models under Zellner’s g

Description

summary method for class "zlm"

Usage

## S3 method for class 'zlm'
summary(object, printout = TRUE, ...)

Arguments

object an object of class zlm: see "Examples" below

printout If TRUE (default, then information is printed to console in a neat form

... further arguments passed to or from other methods

Details

summary.zlm prints out coefficients expected values and their standard deviations, as well as in-
formation on the gprior and the log marginal likelihood. However, it invisibly returns a list with
elements as described below:
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Value

A list with the following elements

residuals The expected value of residuals from the model

coefficients The posterior expected values of coefficients (including the intercept)

coef.sd Posterior standard deviations of the coefficients (the intercept SD is NA, since an
improper prior was used)

gprior The g prior as it has been submitted to object

E.shrinkage the shrinkage factor g/(1 + g), respectively its posterior expected value in case
of a hyper-g prior

SD.shrinkage (Optionally) the shrinkage factor’s posterior standard deviation (in case of a
hyper-g prior)

log.lik The log marginal likelihood of the model

Author(s)

Stefan Zeugner

See Also

zlm for creating zlm objects, link{summary.lm} for a similar function on OLS models

See also http://bms.zeugner.eu for additional help.

Examples

data(datafls)

#simple example
foo = zlm(datafls)
summary(foo)

sfoo = summary(foo,printout=FALSE)
print(sfoo$E.shrinkage)

topmod Topmodel Object

Description

Create or use an updateable list keeping the best x models it encounters (for advanced users)

http://bms.zeugner.eu
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Usage

topmod(
nbmodels,
nmaxregressors = NA,
bbeta = FALSE,
lengthfixedvec = 0,
liks = numeric(0),
ncounts = numeric(0),
modelbinaries = matrix(0, 0, 0),
betas = matrix(0, 0, 0),
betas2 = matrix(0, 0, 0),
fixed_vector = matrix(0, 0, 0)

)

Arguments

nbmodels The maximum number of models to be retained by the topmod object

nmaxregressors The maximum number of covariates the models in the topmod object are allowed
to have

bbeta if bbeta=TRUE, then first and second moments of model coefficients are stored in
addition to basic model statistics (Note: if bbeta<0 then only the first moments
are saved)

lengthfixedvec The length of an optional fixed vector adhering to each model (for instance
R-squared, etc). If lengthfixedvec=0 then no additonal fixed vector will be
stored.

liks optional vector of log-likelihoods to initialize topmod object with (length must
be <=nbmodels) - see example below

ncounts optional vector of MCMC frequencies to initialize topmod object with (same
length as liks) - see example below

modelbinaries optional matrix whose columns detail model binaries to initialize topmod object
with (same nb columns as liks, nb rows as nmaxregressors) - see example
below

betas optional matrix whose columns are coefficients to initialize topmod object with
(same dimensions as modelbinaries) - see example below

betas2 optional matrix whose columns are coefficients’ second moments to initialize
topmod object with (same dimensions as modelbinaries) - see example below

fixed_vector optional matrix whose columns are a fixed vector initialize topmod object with
(same ncol as modelbinaries) - see example below

Details

A ’topmod’ object (as created by topmod) holds three basic vectors: lik (for the (log) likelihood
of models or similar), bool() for a hexcode presentation of the model binaries (cf. bin2hex) and
ncount() for the times the models have been drawn.
All these vectors are sorted descendantly by lik, and are of the same length. The maximum length
is limited by the argument nbmodels.
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If tmo is a topmod object, then a call to tmo$addmodel (e.g. tmo$addmodel(mylik=4,vec01=c(T,F,F,T))
updates the object tmo by a model represented by vec01 (here the one including the first and fourth
regressor) and the marginal (log) likelihood lik (here: 4).

If this model is already part of tmo, then its respective ncount entry is incremented by one; else it
is inserted into a position according to the ranking of lik.

In addition, there is the possibility to save (the first moments of) coefficients of a model (betas) and
their second moments (betas2), as well as an arbitrary vector of statistics per model (fixed_vector).

is.topmod returns TRUE if the argument is of class ’topmod’

Value

a call to topmod returns a list of class "topmod" with the following elements:

addmodel(mylik, vec01, vbeta=numeric(0), vbeta2=numeric(0),
fixedvec=numeric(0))

function that adjusts the list of models in the ’topmod’ object (see Details).
mylik is the basic selection criterion (usually log likelihood), vec01 is the model
binary (logical or numeric) indicating which regressors are included.
vbeta is a vector of length equal to sum(vec01), contianing only the non-zero
coefficients (only accounted for if bbeta!=FALSE). vbeta2 is a similar vector
of second moments etc. (only accounted for if bbeta=TRUE); fixedvec is an
arbitrary vector of length lengthfixedvec (see above)

lik() A numeric vector of the best models (log) likelihoods, in decreasing order

bool() A character vector of hexmode expressions for the model binaries (cf. bin2hex),
sorted by lik()

ncount() A numeric vector of MCMC frequencies for the best models (i.e. how often the
respective model was introduced by addmodel)

nbmodels Returns the argument nbmodel

nregs Returns the argument nmaxregressors

bool_binary() Returns a matrix whose columns present the models conforming to lik() in
binary form

betas() a matrix whose columns are the coefficients conforming to bool_binary()
(Note that these include zero coefficients due to non-inclusion of covariates);
Note: if bbeta=FALSE this returns an empty matrix

betas2() similar to betas , for the second moments of coefficients Note: if bbeta<=0,
this returns an empty matrix

fixed_vector() The columns of this matrix return the fixed_vector statistics conforming to
lik() (see Details); Note: if lengthfixedvec=0 this returns an empty matrix

Note

topmod is rather intended as a building block for programming; it has no direct application for a
user of the BMS package.
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See Also

the object resulting from bms includes an element of class ’topmod’

Check http://bms.zeugner.eu for additional help.

Examples

#standard use
tm= topmod(2,4,TRUE,0) #should keep a maximum two models
tm$addmodel(-2.3,c(1,1,1,1),1:4,5:8) #update with some model
tm$addmodel(-2.2,c(0,1,1,1),1:3,5:7) #add another model
tm$addmodel(-2.2,c(0,1,1,1),1:3,5:7) #add it again -> adjust ncount
tm$addmodel(-2.5,c(1,0,0,1),1:2,5:6) #add another model

#read out
tm$lik()
tm$ncount()
tm$bool_binary()
tm$betas()

is.topmod(tm)

#extract a topmod oobject only containing the second best model
tm2=tm[2]

#advanced: should return the same result as
#initialize
tm2= topmod(2,4,TRUE,0, liks = c(-2.2,-2.3), ncounts = c(2,1),

modelbinaries = cbind(c(0,1,1,1),c(1,1,1,1)), betas = cbind(0:3,1:4),
betas2 = cbind(c(0,5:7),5:8))

#update
tm$addmodel(-2.5,c(1,0,0,1),1:2,5:6) #add another model

#read out
tm$lik()
tm$ncount()
tm$bool_binary()
tm$betas()

topmod-class Class "topmod"

Description

An updateable list keeping the best x models it encounters in any kind of model iteration

http://bms.zeugner.eu
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Objects from the Class

Objects can be created by calls to topmod, or indirectly by calls to bms.

A ’topmod’ object (as created by topmod) holds three basic vectors: lik (for the (log) likelihood
of models or similar), bool() for a hexcode presentation of the model binaries (cf. bin2hex) and
ncount() for the times the models have been drawn.
All these vectors are sorted descendantly by lik, and are of the same length. The maximum length
is limited by the argument nbmodels.

If tmo is a topmod object, then a call to tmo$addmodel (e.g. tmo$addmodel(mylik=4,vec01=c(T,F,F,T))
updates the object tmo by a model represented by vec01 (here the one including the first and fourth
regressor) and the marginal (log) likelihood lik (here: 4).
If this model is already part of tmo, then its respective ncount entry is incremented by one; else it
is inserted into a position according to the ranking of lik.
In addition, there is the possibility to save (the first moments of) coefficients of a model (betas) and
their second moments (betas2), as well as an arbitrary vector of statistics per model (fixed_vector).

Author(s)

Martin Feldkircher and Stefan Zeugner

References

http://bms.zeugner.eu

See Also

topmod to create topmod objects and a more detailed description, is.topmod to test for this class

Examples

tm= topmod(2,4,TRUE,0) #should keep a maximum two models
tm$addmodel(-2.3,c(1,1,1,1),1:4,5:8) #update with some model
tm$addmodel(-2.2,c(0,1,1,1),1:3,5:7) #add another model
tm$addmodel(-2.2,c(0,1,1,1),1:3,5:7) #add it again -> adjust ncount
tm$addmodel(-2.5,c(1,0,0,1),1:2,5:6) #add another model

#read out
tm$lik()
tm$ncount()
tm$bool_binary()
tm$betas()

http://bms.zeugner.eu
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topmodels.bma Model Binaries and their Posterior model Probabilities

Description

Returns a matrix whose columns show which covariates were included in the best models in a ’bma’
object. The last two columns detail posterior model probabilities.

Usage

topmodels.bma(bmao)

Arguments

bmao an object of class ’bma’ - see bma-class

Details

Each bma class (the result of bms) contains ’top models’, the x models with tthe best analytical
likelihood that bms had encountered while sampling

See pmp.bma for an explanation of likelihood vs. MCMC frequency concepts

Value

Each column in the resulting matrix corresponds to one of the ’best’ models in bmao: the first
column for the best model, the second for the second-best model, etc. The model binaries have
elements 1 if the regressor given by the row name was included in the respective models, and 0
otherwise. The second-last row shows the model’s posterior model probability based on marginal
likelihoods (i.e. its marginal likelihood over the sum of likelihoods of all best models) The last row
shows the model’s posterior model probability based on MCMC frequencies (i.e. how often the
model was accepted vs sum of acceptance of all models) Note that the column names are hexcode
representations of the model binaries (e.g. "03" for c(0,0,0,1,0,0))

See Also

topmod for creating topmod objects, bms for their typical use, pmp.bma for comparing posterior
model probabilities

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)
#sample with a limited data set for demonstration
mm=bms(datafls[,1:12],nmodel=20)

#show binaries for all
topmodels.bma(mm)

http://bms.zeugner.eu
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#show binaries for 2nd and 3rd best model, without the model probs
topmodels.bma(mm[2:3])[1:11,]

#access model binaries directly
mm$topmod$bool_binary()

variable.names.bma Variable names and design matrix

Description

Simple utilities retrieving variable names and design matrix from a bma object

Usage

## S3 method for class 'bma'
variable.names(object, ...)

Arguments

object A bma object (as produced by bms)

... further arguments passed to or from other methods

Details

All functions are bma-functions for the generic methods variable.names, deviance, and model.frame.

See Also

bms for creating bma objects

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)
bma_enum=bms(datafls[1:20,1:10])

model.frame(bma_enum) # similar to
bma_enum$arguments$X.data

variable.names(bma_enum)[-1] # is equivalent to
bma_enum$reg.names

http://bms.zeugner.eu
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variable.names.zlm Variable names and design matrix

Description

Simple utilities retrieving variable names and design matrix from a bma object

Usage

## S3 method for class 'zlm'
variable.names(object, ...)

Arguments

object A bma object (as produced by bms)

... further arguments passed to or from other methods

Details

variable.names.zlm: method variable.names for a zlm model.
vcov.zlm: the posterior variance-covariance matrix of the coefficients of a zlm model - cf. vcov
logLik.zlm: a zlm model’s log-likelihood p(y|M) according to the implementation of the respec-
tive coefficent prior

See Also

zlm for creating zlm objects

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)

zz=zlm(datafls)
variable.names(zz)
vcov(zz)
logLik(zz)

http://bms.zeugner.eu
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zlm Bayesian Linear Model with Zellner’s g

Description

Used to fit the Bayesian normal-conjugate linear model with Zellner’s g prior and mean zero coef-
ficient priors. Provides an object similar to the lm class.

Usage

zlm(formula, data = NULL, subset = NULL, g = "UIP")

Arguments

formula an object of class "formula" (or one that can be coerced to that class), such as a
data.frame - cf. lm

data an optional data.frame (or one that can be coerced to that class): cf. lm

subset an optional vector specifying a subset of observations to be used in the fitting
process.

g specifies the hyperparameter on Zellner’s g-prior for the regression coefficients.
g="UIP" corresponds to g = N , the number of observations (default); g="BRIC"
corresponds to the benchmark prior suggested by Fernandez, Ley and Steel
(2001), i.e g = max(N,K2), where K is the total number of covariates;
g="EBL" estimates a local empirical Bayes g-parameter (as in Liang et al. (2008));
g="hyper" takes the ’hyper-g’ prior distribution (as in Liang et al., 2008) with
the default hyper-parameter a = 3; This hyperparameter can be adjusted (be-
tween 2 < a <= 4) by setting g="hyper=2.9", for instance.
Alternatively, g="hyper=UIP" sets the prior expected value of the shrinkage
factor equal to that of UIP (above), g="hyper=BRIC" sets it according to BRIC

Details

zlm estimates the coefficients of the following model y = α +Xβ + ϵ where ϵ ~ N(0, σ2) and X
is the design matrix
The priors on the intercept α and the variance σ are improper: alpha ∝ 1, sigma ∝ σ−1

Zellner’s g affects the prior on coefficients: beta ~ N(0, σ2g(X ′X)−1).
Note that the prior mean of coefficients is set to zero by default and cannot be adjusted. Note
moreover that zlm always includes an intercept.

Value

Returns a list of class zlm that contains at least the following elements (cf. lm):

coefficients a named vector of posterior coefficient expected values

residuals the residuals, that is response minus fitted values

fitted.values the fitted mean values
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rank the numeric rank of the fitted linear model

df.residual the residual degrees of freedom

call the matched call

terms the terms object used

model the model frame used

coef2moments a named vector of coefficient posterior second moments

marg.lik the log marginal likelihood of the model

gprior.info a list detailing information on the g-prior, cf. output value gprior.info in bms

Author(s)

Stefan Zeugner

References

The representation follows Fernandez, C. E. Ley and M. Steel (2001): Benchmark priors for
Bayesian model averaging. Journal of Econometrics 100(2), 381–427

See also http://bms.zeugner.eu for additional help.

See Also

The methods summary.zlm and predict.lm provide additional insights into zlm output.
The function as.zlm extracts a single out model of a bma object (as e.g. created throughbms).
Moreover, lm for the standard OLS object, bms for the application of zlm in Bayesian model aver-
aging.

Check http://bms.zeugner.eu for additional help.

Examples

data(datafls)

#simple example
foo = zlm(datafls)
summary(foo)

#example with formula and subset
foo2 = zlm(y~GDP60+LifeExp, data=datafls, subset=2:70) #basic model, omitting three countries
summary(foo2)

http://bms.zeugner.eu
http://bms.zeugner.eu
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zlm-class Class "zlm"

Description

A list holding output from the Bayesian Linar Model under Zellner’s g prior akin to class ’lm’

Objects from the Class

Objects can be created via calls to zlm, but indirectly also via as.zlm.
zlm estimates a Bayesian Linear Model under Zellner’s g prior - its output is very similar to objects
of class lm (cf. section ’Value’)

Author(s)

Martin Feldkircher and Stefan Zeugner

References

http://bms.zeugner.eu

See Also

zlm and as.zlm for creating zlm objects,
density.zlm, predict.zlm and summary.zlm for other posterior results

http://bms.zeugner.eu
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