Package: GWRLASSO 0.1.0

Nobin Chandra Paul

GWRLASSO: A Hybrid Model for Spatial Prediction Through Local Regression

It implements a hybrid spatial model for improved spatial prediction by combining the variable selection capability of LASSO (Least Absolute Shrinkage and Selection Operator) with the Geographically Weighted Regression (GWR) model that captures the spatially varying relationship efficiently. For method details see, Wheeler, D.C.(2009).<doi:10.1068/a40256>. The developed hybrid model efficiently selects the relevant variables by using LASSO as the first step; these selected variables are then incorporated into the GWR framework, allowing the estimation of spatially varying regression coefficients at unknown locations and finally predicting the values of the response variable at unknown test locations while taking into account the spatial heterogeneity of the data. Integrating the LASSO and GWR models enhances prediction accuracy by considering spatial heterogeneity and capturing the local relationships between the predictors and the response variable. The developed hybrid spatial model can be useful for spatial modeling, especially in scenarios involving complex spatial patterns and large datasets with multiple predictor variables.

Authors:Nobin Chandra Paul [aut, cre, cph], Anil Rai [aut], Ankur Biswas [aut], Tauqueer Ahmad [aut], Bhaskar B. Gaikwad [aut], Dhananjay D. Nangare [aut], K. Sammi Reddy [aut]

GWRLASSO_0.1.0.tar.gz
GWRLASSO_0.1.0.tar.gz(r-4.5-noble)GWRLASSO_0.1.0.tar.gz(r-4.4-noble)
GWRLASSO_0.1.0.tgz(r-4.4-emscripten)GWRLASSO_0.1.0.tgz(r-4.3-emscripten)
GWRLASSO.pdf |GWRLASSO.html
GWRLASSO/json (API)

# Install 'GWRLASSO' in R:
install.packages('GWRLASSO', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 3 scripts 135 downloads 2 exports 15 dependencies

Last updated 1 years agofrom:98b31a6ecc. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 02 2024
R-4.5-linuxOKNov 02 2024

Exports:GWRLASSO_exponentialGWRLASSO_gaussian

Dependencies:askpasscodetoolscurlforeachglmnetiteratorslatticeMatrixnumbersqpdfRcppRcppEigenshapesurvivalsys

GWRLASSO:A Hybrid Model for Spatial Prediction Through Local Regression

Rendered fromGWRLASSO.Rmdusingknitr::rmarkdownon Nov 02 2024.

Last update: 2023-08-28
Started: 2023-08-28