Package: crrcbcv 1.0

Xinyuan Chen
crrcbcv: Bias-Corrected Variance for Competing Risks Regression with Clustered Data
A user friendly function 'crrcbcv' to compute bias-corrected variances for competing risks regression models using proportional subdistribution hazards with small-sample clustered data. Four types of bias correction are included: the MD-type bias correction by Mancl and DeRouen (2001) <doi:10.1111/j.0006-341X.2001.00126.x>, the KC-type bias correction by Kauermann and Carroll (2001) <doi:10.1198/016214501753382309>, the FG-type bias correction by Fay and Graubard (2001) <doi:10.1111/j.0006-341X.2001.01198.x>, and the MBN-type bias correction by Morel, Bokossa, and Neerchal (2003) <doi:10.1002/bimj.200390021>.
Authors:
crrcbcv_1.0.tar.gz
crrcbcv_1.0.tar.gz(r-4.5-noble)crrcbcv_1.0.tar.gz(r-4.4-noble)
crrcbcv_1.0.tgz(r-4.4-emscripten)crrcbcv_1.0.tgz(r-4.3-emscripten)
crrcbcv.pdf |crrcbcv.html✨
crrcbcv/json (API)
# Install 'crrcbcv' in R: |
install.packages('crrcbcv', repos = 'https://cloud.r-project.org') |
- cls - Clustered competing risks simulated data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:f9a05c9ae0. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 24 2025 |
R-4.5-linux | OK | Mar 24 2025 |
R-4.4-linux | OK | Mar 24 2025 |
Exports:crrcbcv
Citation
To cite package ‘crrcbcv’ in publications use:
Chen X, Li F (2021). crrcbcv: Bias-Corrected Variance for Competing Risks Regression with Clustered Data. R package version 1.0, https://CRAN.R-project.org/package=crrcbcv.
Corresponding BibTeX entry:
@Manual{, title = {crrcbcv: Bias-Corrected Variance for Competing Risks Regression with Clustered Data}, author = {Xinyuan Chen and Fan Li}, year = {2021}, note = {R package version 1.0}, url = {https://CRAN.R-project.org/package=crrcbcv}, }
Readme and manuals
crrcbcv
This package offers a user friendly function ‘crrcbcv’ to compute bias-corrected variances for competing risks regression models using proportional subdistribution hazards with small-sample clustered data. Four types of bias correction are included: the MD-type bias correction by Mancl and DeRouen (2001), the KC-type bias correction by Kauermann and Carroll (2001), the FG-type bias correction by Fay and Graubard (2001), and the MBN-type bias correction by Morel, Bokossa, and Neerchal (2003).
Installation
You can install the released version of crrcbcv from CRAN with:
install.packages("crrcbcv")
Example
This is a basic example which shows you how to solve a common problem:
library(crrcbcv)
#> Loading required package: crrSC
#> Loading required package: survival
#> Loading required package: abind
#> Loading required package: pracma
data(cls)
mod.est = crrc(ftime=cls$T_obs, fstatus=cls$eps, cov1=cls[,c('X_1','X_2')], cluster=cls$I)
crrcbcv(beta=mod.est$coef, ftime=cls$T_obs, fstatus=cls$eps, cov1=cls[,c('X_1','X_2')],
cluster=cls$I, var.type=c('MD','KC','FG','MBN'))
#> $MD
#> [,1] [,2]
#> [1,] 0.18712217 0.013304534
#> [2,] 0.01330453 0.007767604
#>
#> $KC
#> [,1] [,2]
#> [1,] 0.14807541 0.155472768
#> [2,] 0.01351378 0.006116421
#>
#> $FG
#> [,1] [,2]
#> [1,] 0.145317028 0.005252785
#> [2,] 0.005252785 0.005509824
#>
#> $MBN
#> [,1] [,2]
#> [1,] 0.133946021 0.004038105
#> [2,] 0.004038105 0.008991263
#>
#> attr(,"class")
#> [1] "crrcbcv"