Package: gesso 1.0.2
Natalia Zemlianskaia
gesso: Hierarchical GxE Interactions in a Regularized Regression Model
The method focuses on a single environmental exposure and induces a main-effect-before-interaction hierarchical structure for the joint selection of interaction terms in a regularized regression model. For details see Zemlianskaia et al. (2021) <arxiv:2103.13510>.
Authors:
gesso_1.0.2.tar.gz
gesso_1.0.2.tar.gz(r-4.5-noble)gesso_1.0.2.tar.gz(r-4.4-noble)
gesso_1.0.2.tgz(r-4.4-emscripten)gesso_1.0.2.tgz(r-4.3-emscripten)
gesso.pdf |gesso.html✨
gesso/json (API)
# Install 'gesso' in R: |
install.packages('gesso', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:3b8715c6ad. Checks:OK: 1 NOTE: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 05 2024 |
R-4.5-linux-x86_64 | NOTE | Dec 05 2024 |
Exports:data.gengesso.coefgesso.coefnumgesso.cvgesso.fitgesso.predictselection.metrics
Dependencies:BHbigmemorybigmemory.sriclidplyrfansigenericsgluelatticelifecyclemagrittrMatrixpillarpkgconfigR6RcppRcppEigenRcppThreadrlangtibbletidyselectutf8uuidvctrswithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Hierarchical GxE Interactions in a Regularized Regression Model | gesso-package gesso |
Data Generation | data.gen |
Get model coefficients | gesso.coef |
Get model coefficients with specified number of non-zero interactions | gesso.coefnum |
Cross-Validation | gesso.cv |
gesso fit | gesso.fit |
Predict new outcome vector | gesso.predict |
Selection metrics | selection.metrics |