Package: penAFT 0.3.0

Aaron J. Molstad

penAFT: Fit the Regularized Gehan Estimator with Elastic Net and Sparse Group Lasso Penalties

The semiparametric accelerated failure time (AFT) model is an attractive alternative to the Cox proportional hazards model. This package provides a suite of functions for fitting one popular estimator of the semiparametric AFT model, the regularized Gehan estimator. Specifically, we provide functions for cross-validation, prediction, coefficient extraction, and visualizing both trace plots and cross-validation curves. For further details, please see Suder, P. M. and Molstad, A. J., (2022+) Scalable algorithms for semiparametric accelerated failure time models in high dimensions, to appear in Statistics in Medicine <doi:10.1002/sim.9264>.

Authors:Aaron J. Molstad [aut, cre], Piotr M. Suder [aut]

penAFT_0.3.0.tar.gz
penAFT_0.3.0.tar.gz(r-4.5-noble)penAFT_0.3.0.tar.gz(r-4.4-noble)
penAFT_0.3.0.tgz(r-4.4-emscripten)penAFT_0.3.0.tgz(r-4.3-emscripten)
penAFT.pdf |penAFT.html
penAFT/json (API)

# Install 'penAFT' in R:
install.packages('penAFT', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascpp

1.70 score 9 scripts 176 downloads 7 exports 31 dependencies

Last updated 2 years agofrom:1776c5ca34. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 22 2024
R-4.5-linux-x86_64OKDec 22 2024

Exports:genSurvDatapenAFTpenAFT.coefpenAFT.cvpenAFT.plotpenAFT.predictpenAFT.trace

Dependencies:clicolorspacefansifarverggplot2gluegtableirlbaisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerRcppRcppArmadillorlangscalestibbleutf8vctrsviridisLitewithr