
Package: penAFT (via r-universe)
October 23, 2024

Type Package

Title Fit the Regularized Gehan Estimator with Elastic Net and Sparse
Group Lasso Penalties

Version 0.3.0

Description The semiparametric accelerated failure time (AFT) model is
an attractive alternative to the Cox proportional hazards
model. This package provides a suite of functions for fitting
one popular estimator of the semiparametric AFT model, the
regularized Gehan estimator. Specifically, we provide functions
for cross-validation, prediction, coefficient extraction, and
visualizing both trace plots and cross-validation curves. For
further details, please see Suder, P. M. and Molstad, A. J.,
(2022+) Scalable algorithms for semiparametric accelerated
failure time models in high dimensions, to appear in Statistics
in Medicine <doi:10.1002/sim.9264>.

License GPL (>= 2)

URL ajmolstad.github.io/research

Imports Rcpp, Matrix, ggplot2, irlba

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

Author Aaron J. Molstad [aut, cre]
(<https://orcid.org/0000-0003-0645-5105>), Piotr M. Suder [aut]

Maintainer Aaron J. Molstad <amolstad@ufl.edu>

Repository CRAN

Date/Publication 2023-04-18 03:10:02 UTC

Contents
penAFT-package . 2
genSurvData . 3
penAFT . 4
penAFT.coef . 7

1

https://doi.org/10.1002/sim.9264
https://orcid.org/0000-0003-0645-5105

2 penAFT-package

penAFT.cv . 9
penAFT.plot . 12
penAFT.predict . 13
penAFT.trace . 15

Index 17

penAFT-package Fit and tune the a semiparameteric accelerated failure time model with
weight elastic net or weighted sparse group-lasso penalties.

Description

This package contains numerous functions related to the penalized Gehan estimator. In particular,
the main functions are for solution path computation, cross-validation, prediction, and coefficient
extraction.

Details

The primary functions are penAFT and penAFT.cv, the latter of which performs cross-validation. In
general, both functions fit the penalized Gehan estimator. Given (log(y1), x1, δ1), . . . , (log(yn), xn, δn)
where yi is the minimum of the survival time and censoring time, xi is a p-dimensional predictor,
and δi is the indicator of censoring, penAFT fits the solution path for the argument minimizing

1

n2

n∑
i=1

n∑
j=1

δi{log(yi)− log(yj)− (xi − xj)
′β}− + λg(β)

where {a}− := max(−a, 0), λ > 0, and g is either the weighted elastic net penalty or weighted
sparse group lasso penalty. The weighted elastic net penalty is defined as

α∥w ◦ β∥1 +
(1− α)

2
∥β∥22

where w is a set of non-negative weights (which can be specified in the weight.set argument).
The weighted sparse group-lasso penalty we consider is

α∥w ◦ β∥1 + (1− α)

G∑
l=1

vl∥βGl
∥2

where again, w is a set of non-negative weights and vl are weights applied to each of the G (user-
specified) groups.

For a comprehensive description of the algorithm, and more details about rank-based estimation in
general, please refer to the referenced manuscript.

Author(s)

Aaron J. Molstad and Piotr M. Suder Maintainer: Aaron J. Molstad <amolstad@ufl.edu>

genSurvData 3

genSurvData Generate a survival dataset from the log-logistic accelerated failure
time model.

Description

This is a function for generating synthetic datasets from the log-logistic accelerated failure time
model. The purpose of this function is to provide structured data for the examples of the other
functions’ usage.

Usage

genSurvData(n, p, s, mag, cens.quant = 0.6)

Arguments

n The numer of subjects to be included in the dataset.

p Dimension of the predictor. Note that the function computes the square-root of
a p× p covariance matrix, so setting p large may be time-consuming.

s The number of nonzero regression coefficients in β.

mag The magnitude of the s nonzero regression coefficients. Signs of coefficients are
assigned at random.

cens.quant The quantile of true survival times used to set the mean of the exponential dis-
tribution from which censoring times are drawn. Default is 0.6.

Details

This function generates predictors to follow a p-dimensional multivariate normal distribution whose
covariance has an AR(1) structure with lag 0.7. Then, log survival times are generated as

log(T) = Xβ + ϵ

where ϵ has independent components drawn from a logistic distribution with location parmeter zero
and scale parameter two. Then censoring times are drawn from an exponential distribution with
mean equal to the quantile cens.quant of T .

Value

beta The true data generating regression coefficient vector.

logY The observed failure times or censoring times on the log scale.

status Indicator of censoring; a value of 1 indicates the corresponding component of
logY is an observed log failure time and a value of 0 indicates a log censoring
time.

Xn The n× p matrix of predictors.

4 penAFT

Examples

Generate data

set.seed(1)
genData <- penAFT::genSurvData(n = 50, p = 100, s = 10, mag = 1, cens.quant = 0.6)
X <- genData$X
logY <- genData$logY
delta <- genData$status
str(X)
head(logY)
head(delta)

penAFT Fit the solution path for the regularized semiparametric accelerated
failure time model with weighted elastic net or weighted sparse group
lasso penalties.

Description

A function to fit the solution path for the regularized semiparametric accelerated failure time model
estimator.

Usage

penAFT(X, logY, delta, nlambda = 50,
lambda.ratio.min = 0.1, lambda = NULL,
penalty = NULL, alpha = 1, weight.set = NULL,
groups = NULL, tol.abs = 1e-8, tol.rel = 2.5e-4,
gamma = 0, standardize = TRUE,
admm.max.iter = 1e4, quiet=TRUE)

Arguments

X An n× p matrix of predictors. Observations should be organized by row.

logY An n-dimensional vector of log-survival or log-censoring times.

delta An n-dimensional binary vector indicating whether the jth component of logY
is an observed log-survival time (δj = 1) or a log-censoring time (δj = 0) for
j = 1, . . . , n.

nlambda The number of candidate tuning parameters to consider.
lambda.ratio.min

The ratio of maximum to minimum candidate tuning parameter value. As a de-
fault, we suggest 0.1, but standard model selection procedures should be applied
to select λ.

lambda An optional (not recommended) prespecified vector of candidate tuning param-
eters. Should be in descending order.

penAFT 5

penalty Either "EN" or "SG" for elastic net or sparse group lasso penalties.
alpha The tuning parameter α. See documentation.
weight.set A list of weights. For both penalties, w is an n-dimensional vector of nonneg-

ative weights. For "SG" penalty, can also include v – a non-negative vector the
length of the number of groups. See documentation for usage example.

groups When using penalty "SG", a p-dimensional vector of integers corresponding the
to group assignment of each predictor (i.e., column of X).

tol.abs Absolute convergence tolerance.
tol.rel Relative convergence tolerance.
gamma A non-negative optimization parameter which can improve convergence speed

in certain settings. It is highly recommended to set equal to zero.
standardize Should predictors be standardized (i.e., column-wise average zero and scaled to

have unit variance) for model fitting?
admm.max.iter Maximum number of ADMM iterations.
quiet TRUE or FALSE variable indicating whether progress should be printed.

Details

Given (log y1, x1, δ1), . . . , (log yn, xn, δn) where yi is the minimum of the survival time and cen-
soring time, xi is a p-dimensional predictor, and δi is the indicator of censoring, penAFT fits the
solution path for the argument minimizing

1

n2

n∑
i=1

n∑
j=1

δi{log yi − log yj − (xi − xj)
′β}− + λg(β)

where {a}− := max(−a, 0), λ > 0, and g is either the weighted elastic net penalty (penalty =
"EN") or weighted sparse group lasso penalty (penalty = "SG"). The weighted elastic net penalty
is defined as

α∥w ◦ β∥1 +
(1− α)

2
∥β∥22

where w is a set of non-negative weights (which can be specified in the weight.set argument).
The weighted sparse group-lasso penalty we consider is

α∥w ◦ β∥1 + (1− α)
G∑
l=1

vl∥βGl
∥2

where again, w is a set of non-negative weights and vl are weights applied to each of the G groups.

Value

beta A p× nlambda sparse matrix consisting of the estimates of β for the candidate
values of λ. It is recommended to use penAFT.coef to extract coefficients.

lambda The candidate tuning parameter values.
standardize Were predictors standardized to have unit variance for model fitting?
X.mean The mean of the predictors.
X.sd The standard deviation of the predictors.
alpha The tuning parameter α. See documentation.

6 penAFT

Examples

Generate data

set.seed(1)
genData <- genSurvData(n = 50, p = 50, s = 10, mag = 2, cens.quant = 0.6)
X <- genData$X
logY <- genData$logY
delta <- genData$status

Fit elastic net penalized estimator

fit.en <- penAFT(X = X, logY = logY, delta = delta,

nlambda = 50, lambda.ratio.min = 0.01,
penalty = "EN",
alpha = 1)

coef.en.10 <- penAFT.coef(fit.en, lambda = fit.en$lambda[10])

--
Fit weighted elastic net penalized estimator
--
weight.set <- list("w" = c(0, 0, rep(1, 48)))
fit.weighted.en <- penAFT(X = X, logY = logY, delta = delta,

nlambda = 50, weight.set = weight.set,
penalty = "EN",
alpha = 1)

coef.wighted.en.10 <- penAFT.coef(fit.weighted.en, lambda = fit.weighted.en$lambda[10])

--
Fit ridge penalized estimator with user-specified lambda
--
fit.ridge <- penAFT(X = X, logY = logY, delta = delta,

lambda = 10^seq(-4, 4, length=50),
penalty = "EN",
alpha = 0)

Fit sparse group penalized estimator

groups <- rep(1:5, each = 10)
fit.sg <- penAFT(X = X, logY = logY, delta = delta,

nlambda = 50, lambda.ratio.min = 0.01,
penalty = "SG", groups = groups,
alpha = 0.5)

penAFT.coef 7

Fit weighted sparse group penalized estimator

groups <- rep(1:5, each = 10)
weight.set <- list("w" = c(0, 0, rep(1, 48)),

"v" = 1:5)
fit.weighted.sg <- penAFT(X = X, logY = logY, delta = delta,

nlambda = 100,
weight.set = weight.set,
penalty = "SG", groups = groups,
alpha = 0.5)

coef.weighted.sg.20 <- penAFT.coef(fit.weighted.sg, lambda = fit.weighted.sg$lambda[20])

penAFT.coef Extract regression coefficients from fitted model object

Description

A function to extract coefficients along the solution path for the regularized semiparametric accel-
eratred failure time model estimator.

Usage

penAFT.coef(fit, lambda = NULL)

Arguments

fit A fitted model from penAFT or penAFT.cv.

lambda The tuning parameter value at which to extract coefficients. If NULL and fit is
a penAFT.cv object, will use the tuning parameter value with minimum cross-
validation linear predictor score.

Details

The regression coefficients stored in the fitted model objects coming from penAFT or penAFT.cv
will (i) be on the scale of standardized predictors if standardization was used (which is the default)
and (ii) are stored as a specific sparse matrix so that coefficient extraction is cumbersome. This
function returns the regression coefficient estimates on the original scale of the predictors for a
particular tuning parmaeter value. It is important to note that this method does not return an estimate
of the intercept: the intercept is absored into the error term as the Gehan loss function is invariant
to location change.

Value

beta The coefficient estimates

8 penAFT.coef

Examples

Generate data

set.seed(1)
genData <- genSurvData(n = 100, p = 50, s = 10, mag = 1, cens.quant = 0.6)
X <- genData$X
logY <- genData$logY
delta <- genData$status

Fit elastic net penalized estimator without CV

fit <- penAFT(X = X, logY = logY, delta = delta,

nlambda = 50,
penalty = "EN",
alpha = 1)

coef.10 <- penAFT.coef(fit, lambda = fit$lambda[10])
coef.20 <- penAFT.coef(fit, lambda = fit$lambda[20])

Cannot obtain fit at lambda not in fit$lambda
Not run: coef.error <- penAFT.coef(fit, lambda = 10) # throws error

--
Fit elastic net penalized estimator with CV

fit.cv <- penAFT.cv(X = X, logY = logY, delta = delta,

nlambda = 50,
penalty = "EN",
alpha = 1, nfolds = 5)

--- coefficients at lambda minimizing cross-validation error
coef.cv <- penAFT.coef(fit.cv)

---- coefficients at 10th considered lambda
coef.cv10 <- penAFT.coef(fit.cv, lambda = fit.cv$full.fit$lambda[10])

Repeat with sparse group lasso without CV

groups <- rep(1:10, each = 5)
fit.sg <- penAFT(X = X, logY = logY, delta = delta,

nlambda = 50, groups = groups,
penalty = "SG",
alpha = 0.5)

coef.sg.10 <- penAFT.coef(fit.sg, lambda = fit.sg$lambda[10])
coef.sg.20 <- penAFT.coef(fit.sg, lambda = fit.sg$lambda[20])

penAFT.cv 9

Finally, fit sparse group lasso with CV

groups <- rep(1:10, each = 5)
fit.sg.cv <- penAFT.cv(X = X, logY = logY, delta = delta,

nlambda = 50, groups = groups,
penalty = "SG",
alpha = 0.5, nfolds = 5)

coef.sg.cv <- penAFT.coef(fit.sg.cv)
coef.sg.cv10 <- penAFT.coef(fit.sg.cv, lambda = fit.sg$full.fit$lambda[20])

penAFT.cv Cross-validation function for fitting a regularized semiparametric ac-
celerated failure time model

Description

A function to perform cross-validation and compute the solution path for the regularized semipara-
metric accelerated failure time model estimator.

Usage

penAFT.cv(X, logY, delta, nlambda = 50,
lambda.ratio.min = 0.1, lambda = NULL,
penalty = NULL, alpha = 1,weight.set = NULL,
groups = NULL, tol.abs = 1e-8, tol.rel = 2.5e-4,
standardize = TRUE, nfolds = 5, cv.index = NULL,
admm.max.iter = 1e4,quiet = TRUE)

Arguments

X An n× p matrix of predictors. Observations should be organized by row.

logY An n-dimensional vector of log-survival or log-censoring times.

delta An n-dimensional binary vector indicating whether the jth component of logY
is an observed log-survival time (δj = 1) or a log-censoring time (δj = 0) for
j = 1, . . . , n.

nlambda The number of candidate tuning parameters to consider.
lambda.ratio.min

The ratio of maximum to minimum candidate tuning parameter value. As a de-
fault, we suggest 0.1, but standard model selection procedures should be applied
to select λ.

lambda An optional (not recommended) prespecified vector of candidate tuning param-
eters. Should be in descending order.

10 penAFT.cv

penalty Either "EN" or "SG" for elastic net or sparse group lasso penalties.

alpha The tuning parameter α. See documentation.

weight.set A list of weights. For both penalties, w is an n-dimensional vector of nonneg-
ative weights. For "SG" penalty, can also include v – a non-negative vector the
length of the number of groups. See documentation for usage example.

groups When using penalty "SG", a p-dimensional vector of integers corresponding the
to group assignment of each predictor (i.e., column of X).

tol.abs Absolute convergence tolerance.

tol.rel Relative convergence tolerance.

standardize Should predictors be standardized (i.e., scaled to have unit variance) for model
fitting?

nfolds The number of folds to be used for cross-validation. Default is five. Ten is
recommended when sample size is especially small.

cv.index A list of length nfolds of indices to be used for cross-validation. This is to be
used if trying to perform cross-validation for both α and λ. Use with extreme
caution: this overwrites nfolds.

admm.max.iter Maximum number of ADMM iterations.

quiet TRUE or FALSE variable indicating whether progress should be printed.

Details

Given (log y1, x1, δ1), . . . , (log yn, xn, δn) where for subject i (i = 1, . . . , n), yi is the minimum
of the survival time and censoring time, xi is a p-dimensional predictor, and δi is the indicator of
censoring, penAFT.cv performs nfolds cross-validation for selecting the tuning parameter to be
used in the argument minimizing

1

n2

n∑
i=1

n∑
j=1

δi{log yi − log yj − (xi − xj)
′β}− + λg(β)

where {a}− := max(−a, 0), λ > 0, and g is either the weighted elastic net penalty (penalty =
"EN") or weighted sparse group lasso penalty (penalty = "SG"). The weighted elastic net penalty
is defined as

α∥w ◦ β∥1 +
(1− α)

2
∥β∥22

where w is a set of non-negative weights (which can be specified in the weight.set argument).
The weighted sparse group-lasso penalty we consider is

α∥w ◦ β∥1 + (1− α)

G∑
l=1

vl∥βGl
∥2

where again, w is a set of non-negative weights and vl are weights applied to each of the G groups.

Next, we define the cross-validation errors. Let V1, . . . ,VK be a random nfolds = K element
partition of [n] (the subjects) with the cardinality of each Vk (the "kth fold"") approximately equal
for k = 1, . . . ,K. Let β̂λ(−Vk) be the solution with tuning parameter λ using only data indexed by

penAFT.cv 11

[n] \ {Vk} (i.e., outside the kth fold). Then, definining ei(β) := log yi − β′xi for i = 1, . . . , n, we
call

K∑
k=1

 1

|Vk|2
∑
i∈Vk

∑
j∈Vk

δi{ei(β̂λ(−Vk))− ej(β̂λ(−Vk))}
−

 ,

the cross-validated Gehan loss at λ in the kth fold, and refer to the sum over all nfolds = K folds
as the cross-validated Gehan loss. Similarly, letting letting

ẽi(β̂λ) =

K∑
k=1

(log yi − x′
iβ̂λ(−Vk))1(i ∈ Vk)

for each i ∈ [n], we call n∑
i=1

n∑
j=1

δi{ẽi(β̂λ)− ẽj(β̂λ)}−

the cross-validated linear predictor score at λ.

Value

full.fit A model fit with the same output as a model fit using penAFT. See documentation
for penAFT for more.

cv.err.linPred A nlambda-dimensional vector of cross-validated linear predictor scores.

cv.err.obj A nfolds ×nlambda matrix of cross-valdiation Gehan losses.

cv.index A list of length nfolds. Each element contains the indices for subjects belong-
ing to that particular fold.

Examples

Generate data

set.seed(1)
genData <- genSurvData(n = 50, p = 50, s = 10, mag = 2, cens.quant = 0.6)
X <- genData$X
logY <- genData$logY
delta <- genData$status
p <- dim(X)[2]

Fit elastic net penalized estimator

fit.en <- penAFT.cv(X = X, logY = logY, delta = delta,

nlambda = 10, lambda.ratio.min = 0.1,
penalty = "EN", nfolds = 5,
alpha = 1)

---- coefficients at tuning parameter minimizing cross-valdiation error
coef.en <- penAFT.coef(fit.en)

---- predict at 8th tuning parameter from full fit

12 penAFT.plot

Xnew <- matrix(rnorm(10*p), nrow=10)
predict.en <- penAFT.predict(fit.en, Xnew = Xnew, lambda = fit.en$full.fit$lambda[8])

Fit sparse group penalized estimator

groups <- rep(1:5, each = 10)
fit.sg <- penAFT.cv(X = X, logY = logY, delta = delta,

nlambda = 50, lambda.ratio.min = 0.01,
penalty = "SG", groups = groups, nfolds = 5,
alpha = 0.5)

Pass fold indices

groups <- rep(1:5, each = 10)
cv.index <- list()
for(k in 1:5){
cv.index[[k]] <- which(rep(1:5, length=50) == k)

}
fit.sg.cvIndex <- penAFT.cv(X = X, logY = logY, delta = delta,

nlambda = 50, lambda.ratio.min = 0.01,
penalty = "SG", groups = groups,
cv.index = cv.index,
alpha = 0.5)

--- compare cv indices
Not run: fit.sg.cvIndex$cv.index == cv.index

penAFT.plot Plot cross-validation curves

Description

A function for plotting the cross-validation curves for the regularized semiparametric accelerated
failure time model estimator.

Usage

penAFT.plot(fit)

Arguments

fit A fitted model from penAFT.cv.

penAFT.predict 13

Details

This function returns a plot with the cross-validation curves for the regularized Gehan estimator.
The vertical blue line indicates the tuning parameter which minimized cross-validated linear pre-
dictor scores and the vertical black line indicates the tuning parameter which minimized the cross-
validated Gehan loss according to the one-standard-error rule. The vertical axis (and blue line)
denotes the cross-validated linear predictor scores whereas the right vertical axis (and black line)
denotes cross-validated Gehan loss and standard errors). To make matters simple, we do not allow
for customization of the plot: please refer to the source code if extensive customization is desired.

Value

No return value; prints a plot of cross-validation curves as described in Details.

Examples

Generate data

set.seed(1)
genData <- genSurvData(n = 50, p = 100, s = 10, mag = 2, cens.quant = 0.6)
X <- genData$X
logY <- genData$logY
delta <- genData$status

--
Fit elastic net penalized estimator with CV

fit.cv <- penAFT.cv(X = X, logY = logY, delta = delta,

nlambda = 50,
penalty = "EN", tol.rel = 1e-5,
alpha = 1, nfolds = 10)

penAFT.plot(fit.cv)

penAFT.predict Obtain linear predictor for new subjects using fitted model from
penAFT or penAFT.cv

Description

A function for prediction along the solution path of the regularized semiparametric accelerated
failure time model estimator.

Usage

penAFT.predict(fit, Xnew, lambda = NULL)

14 penAFT.predict

Arguments

fit A fitted model from penAFT or penAFT.cv.

Xnew A matrix of dimension nnew × p. Must be a matrix, even if nnew = 1.

lambda The value of λ used to estimate β. If NULL and fit was obtained using nfolds
non-NULL, the function will use the tuning parameter which minimized cross-
validation linear predictor scores.

Details

It is important to note that the output of this function should not be treated as an estimate of the
log-survival time. Because the Gehan loss function is location invariant, the intercept is absored
into the error. If predictors were standardized for model fitting, this function returns X̃newβ̂ where
X̃new is the version of input Xnew which has been centered and standardized according to the design
matrix used to fit the penAFT or penAFT.cv object. If predictors were not standardized, this function
returns Xnewβ̂.

We recommend input Xnew as a matrix, although if a p-dimensional vector is input, the function
will detect this.

Value

preds The matrix of linear predictors: rows correspond to rows of Xnew.

Examples

Generate data

set.seed(1)
genData <- genSurvData(n = 50, p = 50, s = 10, mag = 2, cens.quant = 0.6)
X <- genData$X
logY <- genData$logY
delta <- genData$status

--- generate data for two new subjects
p <- dim(X)[2]
Xnew <- rbind(rnorm(p), rnorm(p))

Fit elastic net penalized estimator without CV

fit <- penAFT(X = X, logY = logY, delta = delta,

nlambda = 10, lambda.ratio.min = 0.1,
penalty = "EN",
alpha = 1)

predict at 10th candidate tuning parameter
linPred.10 <- penAFT.predict(fit, Xnew = Xnew, lambda = fit$lambda[10])

--

penAFT.trace 15

Fit elastic net penalized estimator with CV

fit.cv <- penAFT.cv(X = X, logY = logY, delta = delta,

nlambda = 50,
penalty = "EN",
alpha = 1, nfolds = 5)

--- return linear predictor at lambda minimizing cross-validation error
linPred.cv <- penAFT.predict(fit.cv, Xnew = Xnew)

--- predict at 10th candidate tuning parameter
linPred.cv10 <- penAFT.predict(fit.cv, Xnew = Xnew, lambda = fit.cv$full.fit$lambda[10])

--
Fit penAFT with cross-validation

groups <- rep(1:5, each = 10)
fit.sg.cv <- penAFT.cv(X = X, logY = logY, delta = delta,

nlambda = 50, groups = groups,
penalty = "SG",
alpha = 0.5, nfolds = 5)

---- return linear predictor at lambda minimizing cross-validation error
linPred.sg.cv <- penAFT.predict(fit.sg.cv, Xnew = Xnew)

--- predict at 10th candidate tuning parameter
linPred.sg.cv10 <- penAFT.predict(fit.sg.cv, Xnew = Xnew, lambda = fit.sg.cv$full.fit$lambda[10])

penAFT.trace Print trace plot for the regularized Gehan estimator fit using penAFT
or penAFT.cv

Description

Print the trace plot for the regularized Gehan estimator.

Usage

penAFT.trace(fit, groupNames=NULL)

Arguments

fit A fitted model from penAFT or penAFT.cv.

groupNames A list of groupnames to be printed when fit used penalty "SG".

16 penAFT.trace

Details

The function penAFT.trace returns a trace plot for a fitted model obtained from either penAFT or
penAFT.cv. If the model is fit using the sparse group-lasso penalty, you may provide names for
the groups (in order of the integer values specifying the groups). This feature may not be desired if
there are a large number of groups, however. The vertical blue line indicates the tuning parameter
which minimized cross-validated linear predictor scores and the vertical black line indicates the
tuning parameter minimizing the cross-validated Gehan loss according to the one-standard error
rule.

Value

No return value; prints a trace plot as described in Details.

Examples

Generate data

set.seed(1)
genData <- genSurvData(n = 50, p = 50, s = 10, mag = 2, cens.quant = 0.6)
X <- genData$X
logY <- genData$logY
delta <- genData$status

--
Fit elastic net penalized estimator with CV

fit.cv <- penAFT.cv(X = X, logY = logY, delta = delta,

nlambda = 10,
penalty = "EN",
alpha = 1, nfolds = 5)

-- print plot
penAFT.trace(fit.cv)

--
Fit sparse group-lasso estimator with CV

groups <- rep(1:5, length=10)
fit.sg.cv <- penAFT.cv(X = X, logY = logY, delta = delta,

nlambda = 50, groups = groups,
penalty = "SG", tol.rel= 1e-5,
alpha = 0, nfolds = 5)

penAFT.trace(fit.sg.cv, groupNames = paste("Group", 1:5, sep="-"))

Index

∗ package
penAFT-package, 2

genSurvData, 3

penAFT, 4
penAFT-package, 2
penAFT.coef, 7
penAFT.cv, 9
penAFT.plot, 12
penAFT.predict, 13
penAFT.trace, 15

17

	penAFT-package
	genSurvData
	penAFT
	penAFT.coef
	penAFT.cv
	penAFT.plot
	penAFT.predict
	penAFT.trace
	Index

