Package: BayesFluxR 0.1.3
Enrico Wegner
BayesFluxR: Implementation of Bayesian Neural Networks
Implementation of 'BayesFlux.jl' for R; It extends the famous 'Flux.jl' machine learning library to Bayesian Neural Networks. The goal is not to have the fastest production ready library, but rather to allow more people to be able to use and research on Bayesian Neural Networks.
Authors:
BayesFluxR_0.1.3.tar.gz
BayesFluxR_0.1.3.tar.gz(r-4.5-noble)BayesFluxR_0.1.3.tar.gz(r-4.4-noble)
BayesFluxR_0.1.3.tgz(r-4.4-emscripten)BayesFluxR_0.1.3.tgz(r-4.3-emscripten)
BayesFluxR.pdf |BayesFluxR.html✨
BayesFluxR/json (API)
NEWS
# Install 'BayesFluxR' in R: |
install.packages('BayesFluxR', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 12 months agofrom:a0de5620ed. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-linux | OK | Nov 05 2024 |
Exports:.set_seedbayes_by_backpropBayesFluxR_setupBNNBNN.totparamsChainDensefind_modeGammainitialise.allsameInverseGammalikelihood.feedforward_normallikelihood.feedforward_tdistlikelihood.seqtoone_normallikelihood.seqtoone_tdistLSTMmadapter.DiagCovmadapter.FixedMassMatrixmadapter.FullCovmadapter.RMSPropmcmcNormalopt.ADAMopt.Descentopt.RMSPropposterior_predictiveprior_predictiveprior.gaussianprior.mixturescaleRNNsadapter.Constsadapter.DualAveragesampler.AdaptiveMHsampler.GGMCsampler.HMCsampler.SGLDsampler.SGNHTStensor_embed_matto_bayesplotTruncatedvi.get_samples