Package: covadap 1.0.1

Rosamarie Frieri

covadap: Implement Covariate-Adaptive Randomization

Implementing seven Covariate-Adaptive Randomization to assign patients to two treatments. Three of these procedures can also accommodate quantitative and mixed covariates. Given a set of covariates, the user can generate a single sequence of allocations or replicate the design multiple times by simulating the patients' covariate profiles. At the end, an extensive assessment of the performance of the randomization procedures is provided, calculating several imbalance measures. See Baldi Antognini A, Frieri R, Zagoraiou M and Novelli M (2022) <doi:10.1007/s00362-022-01381-1> for details.

Authors:Rosamarie Frieri [aut, cre], Marco Novelli [aut]

covadap_1.0.1.tar.gz
covadap_1.0.1.tar.gz(r-4.5-noble)covadap_1.0.1.tar.gz(r-4.4-noble)
covadap_1.0.1.tgz(r-4.4-emscripten)covadap_1.0.1.tgz(r-4.3-emscripten)
covadap.pdf |covadap.html
covadap/json (API)

# Install 'covadap' in R:
install.packages('covadap', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 231 downloads 23 exports 0 dependencies

Last updated 12 months agofrom:d2fc52d63f. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-linuxOKOct 31 2024

Exports:BSDBSD.simCABCDCABCD.simDABCDDABCD.simdata_preprocECADEECADE.simHuHuHuHu.simImb.mImb.m.simKERKER.simp.inversePocSimPocSim.simprint_covadapprint_mixed.covadapprint_mixed.simprint_simsummary_covadap

Dependencies: