Package: kko 1.0.1

Xiang Lyu

kko: Kernel Knockoffs Selection for Nonparametric Additive Models

A variable selection procedure, dubbed KKO, for nonparametric additive model with finite-sample false discovery rate control guarantee. The method integrates three key components: knockoffs, subsampling for stability, and random feature mapping for nonparametric function approximation. For more information, see the accompanying paper: Dai, X., Lyu, X., & Li, L. (2021). “Kernel Knockoffs Selection for Nonparametric Additive Models”. arXiv preprint <arxiv:2105.11659>.

Authors:Xiaowu Dai [aut], Xiang Lyu [aut, cre], Lexin Li [aut]

kko_1.0.1.tar.gz
kko_1.0.1.tar.gz(r-4.5-noble)kko_1.0.1.tar.gz(r-4.4-noble)
kko_1.0.1.tgz(r-4.4-emscripten)kko_1.0.1.tgz(r-4.3-emscripten)
kko.pdf |kko.html
kko/json (API)

# Install 'kko' in R:
install.packages('kko', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 1 stars 2 scripts 124 downloads 6 exports 22 dependencies

Last updated 3 years agofrom:de22258945. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-linuxOKNov 01 2024

Exports:generate_datakkoKO_evaluationrk_fitrk_subsamplerk_tune

Dependencies:codetoolscorpcordoParallelExtDistforeachglmnetgrpreggtoolsiteratorsknockofflatticeMatrixnloptrnumDerivoptimxpracmaRcppRcppEigenRdsdpRSpectrashapesurvival

Vignette of R package kko

Rendered fromkko.Rmdusingknitr::rmarkdownon Nov 01 2024.

Last update: 2022-02-01
Started: 2022-02-01