Package: SpTe2M 1.0.3

Kai Yang

SpTe2M: Nonparametric Modeling and Monitoring of Spatio-Temporal Data

Spatio-temporal data have become increasingly popular in many research fields. Such data often have complex structures that are difficult to describe and estimate. This package provides reliable tools for modeling complicated spatio-temporal data. It also includes tools of online process monitoring to detect possible change-points in a spatio-temporal process over time. More specifically, the package implements the spatio-temporal mean estimation procedure described in Yang and Qiu (2018) <doi:10.1002/sim.7622>, the spatio-temporal covariance estimation procedure discussed in Yang and Qiu (2019) <doi:10.1002/sim.8315>, the three-step method for the joint estimation of spatio-temporal mean and covariance functions suggested by Yang and Qiu (2022) <doi:10.1007/s10463-021-00787-2>, the spatio-temporal disease surveillance method discussed in Qiu and Yang (2021) <doi:10.1002/sim.9150> that can accommodate the covariate effect, the spatial-LASSO-based process monitoring method proposed by Qiu and Yang (2023) <doi:10.1080/00224065.2022.2081104>, and the online spatio-temporal disease surveillance method described in Yang and Qiu (2020) <doi:10.1080/24725854.2019.1696496>.

Authors:Kai Yang [aut, cre], Peihua Qiu [ctb]

SpTe2M_1.0.3.tar.gz
SpTe2M_1.0.3.tar.gz(r-4.5-noble)SpTe2M_1.0.3.tar.gz(r-4.4-noble)
SpTe2M_1.0.3.tgz(r-4.4-emscripten)SpTe2M_1.0.3.tgz(r-4.3-emscripten)
SpTe2M.pdf |SpTe2M.html
SpTe2M/json (API)

# Install 'SpTe2M' in R:
install.packages('SpTe2M', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:
  • ili_dat - Florida influenza-like illness data
  • pm25_dat - PM2.5 concentration data
  • sim_dat - A simulated spatio-temporal dataset

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

fortran

2.41 score 26 scripts 204 downloads 9 exports 59 dependencies

Last updated 1 years agofrom:aa2c6666d8. Checks:2 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 22 2025
R-4.5-linux-x86_64OKJan 22 2025

Exports:cv_mspemod_cvspte_covestspte_decorspte_meanestspte_semiparmregsptemnt_cusumsptemnt_ewmacsptemnt_ewsl

Dependencies:base64encbslibcachemclicodetoolscolorspacedigestevaluatefansifarverfastmapfontawesomeforeachfsggplot2glmnetgluegtablehighrhtmltoolsisobanditeratorsjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrmapprojmapsMASSMatrixmemoisemgcvmimemunsellnlmepillarpkgconfigR6rappdirsRColorBrewerRcppRcppEigenrlangrmarkdownsassscalesshapesurvivaltibbletinytexutf8vctrsviridisLitewithrxfunyaml

SpTe2M: Nonparametric Modeling and Monitoring of Spatio-Temporal Data

Rendered fromSpTe2M.Rmdusingknitr::rmarkdownon Jan 22 2025.

Last update: 2023-09-30
Started: 2023-09-29